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Preface to the First Edition

The purpose of this book is for readers to learn how to apply statistical methods to the biomedical
sciences. The book is written so that those with no prior training in statistics and a mathematical
knowledge through algebra can follow the text—although the more mathematical training one
has, the easier the learning. The book is written for people in a wide variety of biomedical fields,
including (alphabetically) biologists, biostatisticians, dentists, epidemiologists, health services
researchers, health administrators, nurses, and physicians. The text appears to have a daunting
amount of material. Indeed, there is a great deal of material, but most students will not cover it
all. Also, over 30% of the text is devoted to notes, problems, and references, so that there is not
as much material as there seems to be at first sight. In addition to not covering entire chapters,
the following are optional materials: asterisks (*) preceding a section number or problem denote
more advanced material that the instructor may want to skip; the notes at the end of each chapter
contain material for extending and enriching the primary material of the chapter, but this may
be skipped.

Although the order of authorship may appear alphabetical, in fact it is random (we tossed a fair
coin to determine the sequence) and the book is an equal collaborative effort of the authors. We
have many people to thank. Our families have been helpful and long-suffering during the writing
of the book: for LF, Ginny, Brad, and Laura; for GvB, Johanna, Loeske, William John, Gerard,
Christine, Louis, and Bud and Stacy. The many students who were taught with various versions
of portions of this material were very helpful. We are also grateful to the many collaborating
investigators, who taught us much about science as well as the joys of collaborative research.
Among those deserving thanks are for LF: Ed Alderman, Christer Allgulander, Fred Applebaum,
Michele Battie, Tom Bigger, Stan Bigos, Jeff Borer, Martial Bourassa, Raleigh Bowden, Bob
Bruce, Bernie Chaitman, Reg Clift, Rollie Dickson, Kris Doney, Eric Foster, Bob Frye, Bernard
Gersh, Karl Hammermeister, Dave Holmes, Mel Judkins, George Kaiser, Ward Kennedy, Tom
Killip, Ray Lipicky, Paul Martin, George McDonald, Joel Meyers, Bill Myers, Michael Mock,
Gene Passamani, Don Peterson, Bill Rogers, Tom Ryan, Jean Sanders, Lester Sauvage, Rainer
Storb, Keith Sullivan, Bob Temple, Don Thomas, Don Weiner, Bob Witherspoon, and a large
number of others. For GvB: Ralph Bradley, Richard Cornell, Polly Feigl, Pat Friel, Al Heyman,
Myles Hollander, Jim Hughes, Dave Kalman, Jane Koenig, Tom Koepsell, Bud Kukull, Eric
Larson, Will Longstreth, Dave Luthy, Lorene Nelson, Don Martin, Duane Meeter, Gil Omenn,
Don Peterson, Gordon Pledger, Richard Savage, Kirk Shy, Nancy Temkin, and many others.
In addition, GvB acknowledges the secretarial and moral support of Sue Goleeke. There were
many excellent and able typists over the years; special thanks to Myrna Kramer, Pat Coley, and
Jan Alcorn. We owe special thanks to Amy Plummer for superb work in tracking down authors
and publishers for permission to cite their work. We thank Robert Fisher for help with numerous
figures. Rob Christ did an excellent job of using I&TEX for the final version of the text. Finally,
several people assisted with running particular examples and creating the tables; we thank Barry
Storer, Margie Jones, and Gary Schoch.

ix



X PREFACE TO THE FIRST EDITION

Our initial contact with Wiley was the indefatigable Beatrice Shube. Her enthusiasm for
our effort carried over to her successor, Kate Roach. The associate managing editor, Rose Ann
Campise, was of great help during the final preparation of this manuscript.

With a work this size there are bound to be some errors, inaccuracies, and ambiguous
statements. We would appreciate receiving your comments. We have set up a special electronic-
mail account for your feedback:

http://www.biostat-text.info

Lroyp D. FISHER
GERALD VAN BELLE



Preface to the Second Edition

Biostatistics did not spring fully formed from the brow of R. A. Fisher, but evolved over many
years. This process is continuing, although it may not be obvious from the outside. It has been
ten years since the first edition of this book appeared (and rather longer since it was begun).
Over this time, new areas of biostatistics have been developed and emphases and interpretations
have changed.

The original authors, faced with the daunting task of updating a 1000-page text, decided
to invite two colleagues to take the lead in this task. These colleagues, experts in longitudinal
data analysis, survival analysis, computing, and all things modern and statistical, have given a
twenty-first-century thrust to the book.

The author sequence for the first edition was determined by the toss of a coin (see the Preface
to the First Edition). For the second edition it was decided to switch the sequence of the first
two authors and add the new authors in alphabetical sequence.

This second edition adds a chapter on randomized trials and another on longitudinal data
analysis. Substantial changes have been made in discussing robust statistics, model building,
survival analysis, and discrimination. Notes have been added, throughout, and many graphs
redrawn. We have tried to eliminate errata found in the first edition, and while more have
undoubtedly been added, we hope there has been a net improvement. When you find mistakes
we would appreciate hearing about them at http://www.vanbelle.org/biostatistics/.

Another major change over the past decade or so has been technological. Statistical software
and the computers to run it have become much more widely available—many of the graphs
and new analyses in this book were produced on a laptop that weighs only slightly more than a
copy of the first edition—and the Internet provides ready access to information that used to be
available only in university libraries. In order to accommodate the new sections and to attempt
to keep up with future changes, we have shifted some material to a set of Web appendices. These
may be found at http://www.biostat-text.info. The Web appendices include notes, data sets and
sample analyses, links to other online resources, all but a bare minimum of the statistical tables
from the first edition, and other material for which ink on paper is a less suitable medium.

These advances in technology have not solved the problem of deadlines, and we would
particularly like to thank Steve Quigley at Wiley for his equanimity in the face of schedule
slippage.

GERALD VAN BELLE

Lroyp FISHER

PATRICK HEAGERTY

THOMAS LUMLEY
Seattle, June 15, 2003
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CHAPTER 1

Introduction to Biostatistics

1.1 INTRODUCTION

We welcome the reader who wishes to learn biostatistics. In this chapter we introduce you to
the subject. We define statistics and biostatistics. Then examples are given where biostatistical
techniques are useful. These examples show that biostatistics is an important tool in advancing
our biological knowledge; biostatistics helps evaluate many life-and-death issues in medicine.

We urge you to read the examples carefully. Ask yourself, “what can be inferred from the
information presented?” How would you design a study or experiment to investigate the problem
at hand? What would you do with the data after they are collected? We want you to realize that
biostatistics is a tool that can be used to benefit you and society.

The chapter closes with a description of what you may accomplish through use of this book.
To paraphrase Pythagoras, there is no royal road to biostatistics. You need to be involved. You
need to work hard. You need to think. You need to analyze actual data. The end result will be
a tool that has immediate practical uses. As you thoughtfully consider the material presented
here, you will develop thought patterns that are useful in evaluating information in all areas of
your life.

1.2 WHAT IS THE FIELD OF STATISTICS?

Much of the joy and grief in life arises in situations that involve considerable uncertainty. Here
are a few such situations:

1. Parents of a child with a genetic defect consider whether or not they should have another
child. They will base their decision on the chance that the next child will have the same
defect.

2. To choose the best therapy, a physician must compare the prognosis, or future course, of
a patient under several therapies. A therapy may be a success, a failure, or somewhere
in between; the evaluation of the chance of each occurrence necessarily enters into the
decision.

3. In an experiment to investigate whether a food additive is carcinogenic (i.e., causes or at
least enhances the possibility of having cancer), the U.S. Food and Drug Administration
has animals treated with and without the additive. Often, cancer will develop in both the
treated and untreated groups of animals. In both groups there will be animals that do

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
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2 INTRODUCTION TO BIOSTATISTICS

not develop cancer. There is a need for some method of determining whether the group
treated with the additive has “too much” cancer.

4. It is well known that “smoking causes cancer.” Smoking does not cause cancer in the same
manner that striking a billiard ball with another causes the second billiard ball to move.
Many people smoke heavily for long periods of time and do not develop cancer. The
formation of cancer subsequent to smoking is not an invariable consequence but occurs
only a fraction of the time. Data collected to examine the association between smoking
and cancer must be analyzed with recognition of an uncertain and variable outcome.

5. In designing and planning medical care facilities, planners take into account differing
needs for medical care. Needs change because there are new modes of therapy, as well
as demographic shifts, that may increase or decrease the need for facilities. All of the
uncertainty associated with the future health of a population and its future geographic and
demographic patterns should be taken into account.

Inherent in all of these examples is the idea of uncertainty. Similar situations do not always
result in the same outcome. Statistics deals with this variability. This somewhat vague formula-
tion will become clearer in this book. Many definitions of statistics explicitly bring in the idea
of variability. Some definitions of statistics are given in the Notes at the end of the chapter.

1.3 WHY BIOSTATISTICS?

Biostatistics is the study of statistics as applied to biological areas. Biological laboratory exper-
iments, medical research (including clinical research), and health services research all use
statistical methods. Many other biological disciplines rely on statistical methodology.

Why should one study biostatistics rather than statistics, since the methods have wide appli-
cability? There are three reasons for focusing on biostatistics:

1. Some statistical methods are used more heavily in biostatistics than in other fields. For
example, a general statistical textbook would not discuss the life-table method of analyzing
survival data—of importance in many biostatistical applications. The topics in this book
are tailored to the applications in mind.

2. Examples are drawn from the biological, medical, and health care areas; this helps you
maintain motivation. It also helps you understand how to apply statistical methods.

3. A third reason for a biostatistical text is to teach the material to an audience of health pro-
fessionals. In this case, the interaction between students and teacher, but especially among
the students themselves, is of great value in learning and applying the subject matter.

1.4 GOALS OF THIS BOOK

Suppose that we wanted to learn something about drugs; we can think of four different levels
of knowledge. At the first level, a person may merely know that drugs act chemically when
introduced into the body and produce many different effects. A second, higher level of knowledge
is to know that a specific drug is given in certain situations, but we have no idea why the
particular drug works. We do not know whether a drug might be useful in a situation that we
have not yet seen. At the next, third level, we have a good idea why things work and also
know how to administer drugs. At this level we do not have complete knowledge of all the
biochemical principles involved, but we do have considerable knowledge about the activity and
workings of the drug.

Finally, at the fourth and highest level, we have detailed knowledge of all of the interactions
of the drug; we know the current research. This level is appropriate for researchers: those seeking
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to develop new drugs and to understand further the mechanisms of existing drugs. Think of the
field of biostatistics in analogy to the drug field discussed above. It is our goal that those who
complete the material in this book should be on the third level. This book is written to enable
you to do more than apply statistical techniques mindlessly.

The greatest danger is in statistical analysis untouched by the human mind. We have the
following objectives:

1. You should understand specified statistical concepts and procedures.

2. You should be able to identify procedures appropriate (and inappropriate) to a given
situation. You should also have the knowledge to recognize when you do not know of an
appropriate technique.

3. You should be able to carry out appropriate specified statistical procedures.

These are high goals for you, the reader of the book. But experience has shown that pro-
fessionals in a wide variety of biological and medical areas can and do attain this level of
expertise. The material presented in the book is often difficult and challenging; time and effort
will, however, result in the acquisition of a valuable and indispensable tool that is useful in our
daily lives as well as in scientific work.

1.5 STATISTICAL PROBLEMS IN BIOMEDICAL RESEARCH

We conclude this chapter with several examples of situations in which biostatistical design and
analysis have been or could have been of use. The examples are placed here to introduce you
to the subject, to provide motivation for you if you have not thought about such matters before,
and to encourage thought about the need for methods of approaching variability and uncertainty
in data.

The examples below deal with clinical medicine, an area that has general interest. Other
examples can be found in Tanur et al. [1989].

1.5.1 Example 1: Treatment of King Charles II

This first example deals with the treatment of King Charles II during his terminal illness. The
following quote is taken from Haggard [1929]:

Some idea of the nature and number of the drug substances used in the medicine of the past may
be obtained from the records of the treatment given King Charles II at the time of his death. These
records are extant in the writings of a Dr. Scarburgh, one of the twelve or fourteen physicians called
in to treat the king. At eight o’clock on Monday morning of February 2, 1685, King Charles was being
shaved in his bedroom. With a sudden cry he fell backward and had a violent convulsion. He became
unconscious, rallied once or twice, and after a few days died. Seventeenth-century autopsy records
are far from complete, but one could hazard a guess that the king suffered with an embolism—that
is, a floating blood clot which has plugged up an artery and deprived some portion of his brain
of blood—or else his kidneys were diseased. As the first step in treatment the king was bled to
the extent of a pint from a vein in his right arm. Next his shoulder was cut into and the incised
area “cupped” to suck out an additional eight ounces of blood. After this homicidal onslaught the
drugging began. An emetic and purgative were administered, and soon after a second purgative. This
was followed by an enema containing antimony, sacred bitters, rock salt, mallow leaves, violets, beet
root, camomile flowers, fennel seeds, linseed, cinnamon, cardamom seed, saphron, cochineal, and
aloes. The enema was repeated in two hours and a purgative given. The king’s head was shaved and a
blister raised on his scalp. A sneezing powder of hellebore root was administered, and also a powder
of cowslip flowers “to strengthen his brain.” The cathartics were repeated at frequent intervals and
interspersed with a soothing drink composed of barley water, licorice and sweet almond. Likewise
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white wine, absinthe and anise were given, as also were extracts of thistle leaves, mint, rue, and
angelica. For external treatment a plaster of Burgundy pitch and pigeon dung was applied to the
king’s feet. The bleeding and purging continued, and to the medicaments were added melon seeds,
manna, slippery elm, black cherry water, an extract of flowers of lime, lily-of-the-valley, peony,
lavender, and dissolved pearls. Later came gentian root, nutmeg, quinine, and cloves. The king’s
condition did not improve, indeed it grew worse, and in the emergency forty drops of extract of
human skull were administered to allay convulsions. A rallying dose of Raleigh’s antidote was
forced down the king’s throat; this antidote contained an enormous number of herbs and animal
extracts. Finally bezoar stone was given. Then says Scarburgh: “Alas! after an ill-fated night his
serene majesty’s strength seemed exhausted to such a degree that the whole assembly of physicians
lost all hope and became despondent: still so as not to appear to fail in doing their duty in any detail,
they brought into play the most active cordial.” As a sort of grand summary to this pharmaceutical
debauch a mixture of Raleigh’s antidote, pearl julep, and ammonia was forced down the throat of
the dying king.

From this time and distance there are comical aspects about this observational study describ-
ing the “treatment” given to King Charles. It should be remembered that his physicians were
doing their best according to the state of their knowledge. Our knowledge has advanced consid-
erably, but it would be intellectual pride to assume that all modes of medical treatment in use
today are necessarily beneficial. This example illustrates that there is a need for sound scientific
development and verification in the biomedical sciences.

1.5.2 Example 2: Relationship between the Use of Oral Contraceptives and
Thromboembolic Disease

In 1967 in Great Britain, there was concern about higher rates of thromboembolic disease (disease
from blood clots) among women using oral contraceptives than among women not using oral
contraceptives. To investigate the possibility of a relationship, Vessey and Doll [1969] studied
existing cases with thromboembolic disease. Such a study is called a retrospective study because
retrospectively, or after the fact, the cases were identified and data accumulated for analysis.
The study began by identifying women aged 16 to 40 years who had been discharged from
one of 19 hospitals with a diagnosis of deep vein thrombosis, pulmonary embolism, cerebral
thrombosis, or coronary thrombosis.

The idea of the study was to interview the cases to see if more of them were using oral
contraceptives than one would “expect.” The investigators needed to know how much oral
contraceptive us to expect assuming that such us does not predispose people to thromboembolic
disease. This is done by identifying a group of women “comparable” to the cases. The amount of
oral contraceptive use in this control, or comparison, group is used as a standard of comparison
for the cases. In this study, two control women were selected for each case: The control women
had suffered an acute surgical or medical condition, or had been admitted for elective surgery.
The controls had the same age, date of hospital admission, and parity (number of live births)
as the cases. The controls were selected to have the absence of any predisposing cause of
thromboembolic disease.

If there is no relationship between oral contraception and thromboembolic disease, the cases
with thromboembolic disease would be no more likely than the controls to use oral contracep-
tives. In this study, 42 of 84 cases, or 50%, used oral contraceptives. Twenty-three of the 168
controls, or 14%, of the controls used oral contraceptives. After deciding that such a difference
is unlikely to occur by chance, the authors concluded that there is a relationship between oral
contraceptive use and thromboembolic disease.

This study is an example of a case—control study. The aim of such a study is to examine
potential risk factors (i.e., factors that may dispose a person to have the disease) for a disease.
The study begins with the identification of cases with the disease specified. A control group
is then selected. The control group is a group of subjects comparable to the cases except for
the presence of the disease and the possible presence of the risk factor(s). The case and control
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groups are then examined to see if a risk factor occurs more often than would be expected by
chance in the cases than in the controls.

1.5.3 Example 3: Use of Laboratory Tests and the Relation to Quality of Care

An important feature of medical care are laboratory tests. These tests affect both the quality and
the cost of care. The frequency with which such tests are ordered varies with the physician. It
is not clear how the frequency of such tests influences the quality of medical care. Laboratory
tests are sometimes ordered as part of “defensive” medical practice. Some of the variation is due
to training. Studies investigating the relationship between use of tests and quality of care need
to be designed carefully to measure the quantities of interest reliably, without bias. Given the
expense of laboratory tests and limited time and resources, there clearly is a need for evaluation
of the relationship between the use of laboratory tests and the quality of care.

The study discussed here consisted of 21 physicians serving medical internships as reported
by Schroeder et al. [1974]. The interns were ranked independently on overall clinical capability
(i.e., quality of care) by five faculty internists who had interacted with them during their medical
training. Only patients admitted with uncomplicated acute myocardial infarction or uncompli-
cated chest pain were considered for the study. “Medical records of all patients hospitalized
on the coronary care unit between July 1, 1971 and June 20, 1972, were analyzed and all
patients meeting the eligibility criteria were included in the study. ...” The frequency of labo-
ratory utilization ordered during the first three days of hospitalization was translated into cost.
Since daily EKGs and enzyme determinations (SGOT, LDH, and CPK) were ordered on all
patients, the costs of these tests were excluded. Mean costs of laboratory use were calculated
for each intern’s subset of patients, and the interns were ranked in order of increasing costs on
a per-patient basis.

Ranking by the five faculty internists and by cost are given in Table 1.1. There is considerable
variation in the evaluations of the five internists; for example, intern K is ranked seventeenth
in clinical competence by internists I and III, but first by internist II. This table still does not
clearly answer the question of whether there is a relationship between clinical competence and
the frequency of use of laboratory tests and their cost. Figure 1.1 shows the relationship between
cost and one measure of clinical competence; on the basis of this graph and some statistical
calculations, the authors conclude that “at least in the setting measured, no overall correlation
existed between cost of medical care and competence of medical care.”

This study contains good examples of the types of (basically statistical) problems facing a
researcher in the health administration area. First, what is the population of interest? In other
words, what population do the 21 interns represent? Second, there are difficult measurement
problems: Is level of clinical competence, as evaluated by an internist, equivalent to the level of
quality of care? How reliable are the internists? The variation in their assessments has already
been noted. Is cost of laboratory use synonymous with cost of medical care as the authors seem
to imply in their conclusion?

1.5.4 Example 4: Internal Mammary Artery Ligation

One of the greatest health problems in the world, especially in industrialized nations, is coronary
artery disease. The coronary arteries are the arteries around the outside of the heart. These arteries
bring blood to the heart muscle (myocardium). Coronary artery disease brings a narrowing of
the coronary arteries. Such narrowing often results in chest, neck, and arm pain (angina pectoris)
precipitated by exertion. When arteries block off completely or occlude, a portion of the heart
muscle is deprived of its blood supply, with life-giving oxygen and nutrients. A myocardial
infarction, or heart attack, is the death of a portion of the heart muscle.

As the coronary arteries narrow, the body often compensates by building collateral circu-
lation, circulation that involves branches from existing coronary arteries that develop to bring
blood to an area of restricted blood flow. The internal mammary arteries are arteries that bring
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Table 1.1 Independent Assessment of Clinical Competence of 21 Medical Interns by Five Faculty
Internists and Ranking of Cost of Laboratory Procedures Ordered, George Washington University
Hospital, 1971-1972

Clinical Competence®
Rank of Costs of

Intern I I 111 v \" Total Rank Procedures Ordered”
A 1 2 1 2 1 7 1 10
B 2 6 1 2 13 2 5
C 5 4 11 5 3 28 3 7
D 4 5 3 12 7 31 4 8
E 3 9 8 9 8 37 5 16
F 13 11 7 3 5 39 7 9
G 7 12 5 4 11 39 7 13
H 11 3 9 10 6 39 7 18
I 9 15 6 8 4 42 9 12
J 16 8 4 7 14 49 10 1
K 17 1 17 11 9 55 11 20
L 6 7 21 16 10 60 12 19
M 8 20 14 6 17 65 13 21
N 18 10 13 13 13 67 14 14
(0] 12 14 12 18 15 71 15 17
P 19 13 10 17 16 75 16 11
Q 20 16 16 15 12 77 17 4
R 14 18 19 14 19 84 18 15
S 10 19 18 20 20 87 19 3
T 15 17 20 21 21 94 {20.5 2
U 21 21 15 19 18 94 20.5 5

Source: Data from Schroeder et al. [1974]; by permission of Medical Care.
@1 = most competent.
b1 = least expensive.

blood to the chest. The tributaries of the internal mammary arteries develop collateral circulation
to the coronary arteries. It was thus reasoned that by tying off, or ligating, the internal mammary
arteries, a larger blood supply would be forced to the heart. An operation, internal mammary
artery ligation, was developed to implement this procedure.

Early results of the operation were most promising. Battezzati et al. [1959] reported on
304 patients who underwent internal mammary artery ligation: 94.8% of the patients reported
improvement; 4.9% reported no appreciable change. It would seem that the surgery gave great
improvement [Ratcliff, 1957; Time, 1959]. Still, the possibility remained that the improvement
resulted from a placebo effect. A placebo effect is a change, or perceived change, resulting from
the psychological benefits of having undergone treatment. It is well known that inert tablets will
cure a substantial portion of headaches and stomach aches and afford pain relief. The placebo
effect of surgery might be even more substantial.

Two studies of internal mammary artery ligation were performed using a sham operation as
a control. Both studies were double blind: Neither the patients nor physicians evaluating the
effect of surgery knew whether the ligation had taken place. In each study, incisions were made
in the patient’s chest and the internal mammary arteries exposed. In the sham operation, nothing
further was done. For the other patients, the arteries were ligated. Both studies selected patients
having the ligation or sham operation by random assignment [Hitchcock et al., 1966; Ruffin
et al., 1969].

Cobb et al. [1959] reported on the subjective patient estimates of “significant” improvement.
Patients were asked to estimate the percent improvement after the surgery. Another indication
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(1=cheapest, 21=most expensive)
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Competence Rank
(1=highest, 21=lowest)

Figure 1.1 Rank order of clinical competence vs. rank order of cost of laboratory tests orders for 21
interns, George Washington University Hospital, 1971-1972. (Data from Schroeder et al. [1974].)

of the amount of pain experienced is the number of nitroglycerin tablets taken for anginal pain.
Table 1.2 reports these data.

Dimond et al. [1960] reported a study of 18 patients, of whom five received the sham oper-
ation and 13 received surgery. Table 1.3 presents the patients’ opinion of the percentage benefit
of surgery.

Both papers conclude that it is unlikely that the internal mammary artery ligation has benefit,
beyond the placebo effect, in the treatment of coronary artery disease. Note that 12 of the 14,
or 86%, of those receiving the sham operation reported improvement in the two studies. These
studies point to the need for appropriate comparison groups when making scientific inferences.

Table 1.2 Subjective Improvement as Measured by Patient
Reporting and Number of Nitroglycerin Tablets

Ligated  Nonligated

Number of patients 8 9
Average percent improvement reported 32 43
Subjects reporting 40% or more 5 5
improvement
Subjects reporting no improvement 3 2
Nitroglycerin tablets taken
Average before operation (no./week) 43 30
Average after operation (no./week) 25 17
Average percent decrease (no./week) 34 43

Source: Cobb et al. [1959].
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Table 1.3 Patients’ Opinions of Surgical Benefit

Patients” Opinions of
the Benefit of Surgery Patient Number?

Cured (90-100%) 4,10, 11, 12*, 14*
Definite benefit (50-90%) 2, 3% 6,8, 9% 13%, 15, 17, 18
Improved but disappointed 7
(25-50%)
Improved for two weeks, 1,5, 16
now same Or worse

Source: Dimond et al. [1960].

“The numbers 1-18 refer to the individual patients as they occurred
in the series, grouped according to their own evaluation of their bene-
fit, expressed as a percentage. Those numbers followed by an asterisk
indicate a patient on whom a sham operation was performed.

The use of clinical trials has greatly enhanced medical progress. Examples are given through-
out the book, but this is not the primary emphasis of the text. Good references for learning
much about clinical trials are Meinert [1986], Friedman et al. [1981], Tanur et al. [1989], and
Fleiss [1986].

NOTES

1.1 Some Definitions of Statistics

e “The science of statistics is essentially a branch of Applied Mathematics, and may be
regarded as mathematics applied to observational data. ... Statistics may be regarded
(i) as the study of populations, (ii) as the study of variation, (iii) as the study of methods
of the reduction of data.” Fisher [1950]

o “Statistics is the branch of the scientific method which deals with the data obtained by
counting or measuring the properties of populations of natural phenomena.” Kendall and
Stuart [1963]

e “The science and art of dealing with variation in such a way as to obtain reliable results.”
Mainland [1963]

e “Statistics is concerned with the inferential process, in particular with the planning and
analysis of experiments or surveys, with the nature of observational errors and sources of
variability that obscure underlying patterns, and with the efficient summarizing of sets of
data.” Kruskal [1968]

o “Statistics = Uncertainty and Behavior.” Savage [1968]

13

e “. .. the principal object of statistics [is] to make inference on the probability of events
from their observed frequencies.” von Mises [1957]

e “The technology of the scientific method.” Mood [1950]

o “The statement, still frequently made, that statistics is a branch of mathematics is no more
true than would be a similar claim in respect of engineering ... [G]ood statistical practice
is equally demanding of appreciation of factors outside the formal mathematical structure,
essential though that structure is.” Finney [1975]

There is clearly no complete consensus in the definitions of statistics. But certain elements
reappear in all the definitions: variation, uncertainty, inference, science. In previous sections
we have illustrated how the concepts occur in some typical biomedical studies. The need for
biostatistics has thus been shown.
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CHAPTER 2

Biostatistical Design of Medical Studies

2.1 INTRODUCTION

In this chapter we introduce some of the principles of biostatistical design. Many of the ideas
are expanded in later chapters. This chapter also serves as a reminder that statistics is not an
end in itself but a tool to be used in investigating the world around us. The study of statistics
should serve to develop critical, analytical thought and common sense as well as to introduce
specific tools and methods of processing data.

2.2 PROBLEMS TO BE INVESTIGATED

Biomedical studies arise in many ways. A particular study may result from a sequence of
experiments, each one leading naturally to the next. The study may be triggered by observation
of an interesting case, or observation of a mold (e.g., penicillin in a petri dish). The study may
be instigated by a governmental agency in response to a question of national importance. The
basic ideas of the study may be defined by an advisory panel. Many of the critical studies
and experiments in biomedical science have come from one person with an idea for a radical
interpretation of past data.

Formulation of the problem to be studied lies outside the realm of statistics per se. Sta-
tistical considerations may suggest that an experiment is too expensive to conduct, or may
suggest an approach that differs from that planned. The need to evaluate data from a study
statistically forces an investigator to sharpen the focus of the study. It makes one translate
intuitive ideas into an analytical model capable of generating data that may be evaluated
statistically.

To answer a given scientific question, many different studies may be considered. Possi-
ble studies may range from small laboratory experiments, to large and expensive experiments
involving humans, to observational studies. It is worth spending a considerable amount of time
thinking about alternatives. In most cases your first idea for a study will not be your best—unless
it is your only idea.

In laboratory research, many different experiments may shed light on a given hypothesis or
question. Sometimes, less-than-optimal execution of a well-conceived experiment sheds more
light than arduous and excellent experimentation unimaginatively designed. One mark of a good
scientist is that he or she attacks important problems in a clever manner.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright © 2004 John Wiley & Sons, Inc.
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2.3 VARIOUS TYPES OF STUDIES

A problem may be investigated in a variety of ways. To decide on your method of approach, it
is necessary to understand the types of studies that might be done. To facilitate the discussion
of design, we introduce definitions of commonly used types of studies.

Definition 2.1. An observational study collects data from an existing situation. The data
collection does not intentionally interfere with the running of the system.

There are subtleties associated with observational studies. The act of observation may intro-
duce change into a system. For example, if physicians know that their behavior is being
monitored and charted for study purposes, they may tend to adhere more strictly to proce-
dures than would be the case otherwise. Pathologists performing autopsies guided by a study
form may invariably look for a certain finding not routinely sought. The act of sending out
questionnaires about health care may sensitize people to the need for health care; this might
result in more demand. Asking constantly about a person’s health can introduce hypochondria.

A side effect introduced by the act of observation is the Hawthorne effect, named after
a famous experiment carried out at the Hawthorne works of the Western Electric Company.
Employees were engaged in the production of electrical relays. The study was designed to
investigate the effect of better working conditions, including increased pay, shorter hours, bet-
ter lighting and ventilation, and pauses for rest and refreshment. All were introduced, with
“resulting” increased output. As a control, working conditions were returned to original condi-
tions. Production continued to rise! The investigators concluded that increased morale due to
the attention and resulting esprit de corps among workers resulted in better production. Humans
and animals are not machines or passive experimental units [Roethlisberger, 1941].

Definition 2.2. An experiment is a study in which an investigator deliberately sets one or
more factors to a specific level.

Experiments lead to stronger scientific inferences than do observational studies. The “clean-
est” experiments exist in the physical sciences; nevertheless, in the biological sciences, partic-
ularly with the use of randomization (a topic discussed below), strong scientific inferences can
be obtained. Experiments are superior to observational studies in part because in an observa-
tional study one may not be observing one or more variables that are of crucial importance to
interpreting the observations. Observational studies are always open to misinterpretation due to
a lack of knowledge in a given field. In an experiment, by seeing the change that results when
a factor is varied, the causal inference is much stronger.

Definition 2.3. A laboratory experiment is an experiment that takes place in an environment
(called a laboratory) where experimental manipulation is facilitated.

Although this definition is loose, the connotation of the term laboratory experiment is that
the experiment is run under conditions where most of the variables of interest can be controlled
very closely (e.g., temperature, air quality). In laboratory experiments involving animals, the aim
is that animals be treated in the same manner in all respects except with regard to the factors
varied by the investigator.

Definition 2.4. A comparative experiment is an experiment that compares two or more
techniques, treatments, or levels of a variable.

There are many examples of comparative experiments in biomedical areas. For example,
it is common in nutrition to compare laboratory animals on different diets. There are many
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experiments comparing different drugs. Experiments may compare the effect of a given treatment
with that of no treatment. (From a strictly logical point of view, “no treatment” is in itself a
type of treatment.) There are also comparative observational studies. In a comparative study one
might, for example, observe women using and women not using birth control pills and examine
the incidence of complications such as thrombophlebitis. The women themselves would decide
whether or not to use birth control pills. The user and nonuser groups would probably differ
in a great many other ways. In a comparative experiment, one might have women selected by
chance to receive birth control pills, with the control group using some other method.

Definition 2.5. An experimental unit or study unit is the smallest unit on which an exper-
iment or study is performed.

In a clinical study, the experimental units are usually humans. (In other cases, it may be an
eye; for example, one eye may receive treatment, the other being a control.) In animal experi-
ments, the experimental unit is usually an animal. With a study on teaching, the experimental
unit may be a class—as the teaching method will usually be given to an entire class. Study units
are the object of consideration when one discusses sample size.

Definition 2.6. An experiment is a crossover experiment if the same experimental unit
receives more than one treatment or is investigated under more than one condition of the
experiment. The different treatments are given during nonoverlapping time periods.

An example of a crossover experiment is one in which laboratory animals are treated sequen-
tially with more than one drug and blood levels of certain metabolites are measured for each
drug. A major benefit of a crossover experiment is that each experimental unit serves as its
own control (the term control is explained in more detail below), eliminating subject-to-subject
variability in response to the treatment or experimental conditions being considered. Major dis-
advantages of a crossover experiment are that (1) there may be a carryover effect of the first
treatment continuing into the next treatment period; (2) the experimental unit may change over
time; (3) in animal or human experiments, the treatment introduces permanent physiological
changes; (4) the experiment may take longer so that investigator and subject enthusiasm wanes;
and (5) the chance of dropping out increases.

Definition 2.7. A clinical study is one that takes place in the setting of clinical medicine.

A study that takes place in an organizational unit dispensing health care—such as a hospital,
psychiatric clinic, well-child clinic, or group practice clinic—is a clinical study.

We now turn to the concepts of prospective studies and retrospective studies, usually involving
human populations.

Definition 2.8. A cohort of people is a group of people whose membership is clearly
defined.

Examples of cohorts are all persons enrolling in the Graduate School at the University of
Washington for the fall quarter of 2003; all females between the ages of 30 and 35 (as of a
certain date) whose residence is within the New York City limits; all smokers in the United
States as of January 1, 1953, where a person is defined to be a smoker if he or she smoked one
or more cigarettes during the preceding calendar year. Often, cohorts are followed over some
time interval.

Definition 2.9. An endpoint is a clearly defined outcome or event associated with an exper-
imental or study unit.
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An endpoint may be the presence of a particular disease or five-year survival after, say, a
radical mastectomy. An important characteristic of an endpoint is that it can be clearly defined
and observed.

Definition 2.10. A prospective study is one in which a cohort of people is followed for the
occurrence or nonoccurrence of specified endpoints or events or measurements.

In the analysis of data from a prospective study, the occurrence of the endpoints is often
related to characteristics of the cohort measured at the beginning of the study.

Definition 2.11. Baseline characteristics or baseline variables are values collected at the
time of entry into the study.

The Salk polio vaccine trial is an example of a prospective study, in fact, a prospective
experiment. On occasion, you may be able to conduct a prospective study from existing data;
that is, some unit of government or other agency may have collected data for other purposes,
which allows you to analyze the data as a prospective study. In other words, there is a well-
defined cohort for which records have already been collected (for some other purpose) which
can be used for your study. Such studies are sometimes called historical prospective studies.

One drawback associated with prospective studies is that the endpoint of interest may occur
infrequently. In this case, extremely large numbers of people need to be followed in order that
the study will have enough endpoints for statistical analysis. As discussed below, other designs,
help get around this problem.

Definition 2.12. A retrospective study is one in which people having a particular outcome
or endpoint are identified and studied.

These subjects are usually compared to others without the endpoint. The groups are compared
to see whether the people with the given endpoint have a higher fraction with one or more of
the factors that are conjectured to increase the risk of endpoints.

Subjects with particular characteristics of interest are often collected into registries. Such a
registry usually covers a well-defined population. In Sweden, for example, there is a twin registry.
In the United States there are cancer registries, often defined for a specified metropolitan area.
Registries can be used for retrospective as well as prospective studies. A cancer registry can
be used retrospectively to compare the presence or absence of possible causal factors of cancer
after generating appropriate controls—either randomly from the same population or by some
matching mechanism. Alternatively, a cancer registry can be used prospectively by comparing
survival times of cancer patients having various therapies.

One way of avoiding the large sample sizes needed to collect enough cases prospectively is
to use the case—control study, discussed in Chapter 1.

Definition 2.13. A case—control study selects all cases, usually of a disease, that meet fixed
criteria. A group, called controls, that serve as a comparison for the cases is also selected. The
cases and controls are compared with respect to various characteristics.

Controls are sometimes selected to match the individual case; in other situations, an entire
group of controls is selected for comparison with an entire group of cases.

Definition 2.14. In a matched case—control study, controls are selected to match character-
istics of individual cases. The cases and control(s) are associated with each other. There may
be more than one control for each case.
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Definition 2.15. 1In a frequency-matched case—control study, controls are selected to match
characteristics of the entire case sample (e.g., age, gender, year of event). The cases and controls
are not otherwise associated. There may be more than one control for each case.

Suppose that we want to study characteristics of cases of a disease. One way to do this would
be to identify new cases appearing during some time interval. A second possibility would be
to identify all known cases at some fixed time. The first approach is longitudinal; the second
approach is cross-sectional.

Definition 2.16. A longitudinal study collects information on study units over a specified
time period. A cross-sectional study collects data on study units at a fixed time.

Figure 2.1 illustrates the difference. The longitudinal study might collect information on the
six new cases appearing over the interval specified. The cross-sectional study would identify the
nine cases available at the fixed time point. The cross-sectional study will have proportionately
more cases with a long duration. (Why?) For completeness, we repeat the definitions given
informally in Chapter 1.

Definition 2.17. A placebo treatment is designed to appear exactly like a comparison treat-
ment but to be devoid of the active part of the treatment.

Definition 2.18. The placebo effect results from the belief that one has been treated rather
than having experienced actual changes due to physical, physiological, and chemical activities
of a treatment.

Definition 2.19. A study is single blind if subjects being treated are unaware of which
treatment (including any control) they are receiving. A study is double blind if it is single blind
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Figure 2.1 Longitudinal and cross-sectional study of cases of a disease.
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and the people who are evaluating the outcome variables are also unaware of which treatment
the subjects are receiving.

2.4 STEPS NECESSARY TO PERFORM A STUDY

In this section we outline briefly the steps involved in conducting a study. The steps are interre-
lated and are oversimplified here in order to isolate various elements of scientific research and
to discuss the statistical issues involved:

1. A question or problem area of interest is considered. This does not involve biostatistics
per se.
2. A study is to be designed to answer the question. The design of the study must consider
at least the following elements:
a. Identify the data to be collected. This includes the variables to be measured as well
as the number of experimental units, that is, the size of the study or experiment.

b. An appropriate analytical model needs to be developed for describing and processing
data.

c. What inferences does one hope to make from the study? What conclusions might one
draw from the study? To what population(s) is the conclusion applicable?
3. The study is carried out and the data are collected.
4. The data are analyzed and conclusions and inferences are drawn.

5. The results are used. This may involve changing operating procedures, publishing results,
or planning a subsequent study.

2.5 ETHICS

Many studies and experiments in the biomedical field involve animal and/or human participants.
Moral and legal issues are involved in both areas. Ethics must be of primary concern. In
particular, we mention five points relevant to experimentation with humans:

==Y

. It is our opinion that all investigators involved in a study are responsible for the conduct
of an ethical study to the extent that they may be expected to know what is involved in
the study. For example, we think that it is unethical to be involved in the analysis of data
that have been collected in an unethical manner.

Ut

Investigators are close to a study and often excited about its potential benefits and
advances. It is difficult for them to consider all ethical issues objectively. For this reason,
in proposed studies involving humans (or animals), there should be review by people
not concerned or connected with the study or the investigators. The reviewers should not
profit directly in any way if the study is carried out. Implementation of the study should
be contingent on such a review.

3. People participating in an experiment should understand and sign an informed consent
form. The principle of informed consent says that a participant should know about the
conduct of a study and about any possible harm and/or benefits that may result from partic-
ipation in the study. For those unable to give informed consent, appropriate representatives
may give the consent.

gl

Subjects should be free to withdraw at any time, or to refuse initial participation, without
being penalized or jeopardized with respect to current and future care and activities.

5. Both the Nuremberg Code and the Helsinki Accord recommend that, when possible,
animal studies be done prior to human experimentation.
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References relevant to ethical issues include the U.S. Department of Health, Education,
and Welfare’s (HEW’s) statement on Protection of Human Subjects [1975], Papworth’s book,
Human Guinea Pigs [1967], and Spicker et al. [1988]; Papworth is extremely critical of the
conduct of modern biological experimentation. There are also guidelines for studies involving
animals. See, for example, Guide for the Care and Use of Laboratory Animals [HEW, 1985]
and Animal Welfare [USDA, 1989]. Ethical issues in randomized trials are discussed further in
Chapter 19.

2.6 DATA COLLECTION: DESIGN OF FORMS

2.6.1 What Data Are to Be Collected?

In studies involving only one or two investigators, there is often almost complete agreement as
to what data are to be collected. In this case it is very important that good laboratory records be
maintained. It is especially important that variations in the experimental procedure (e.g., loss of
power during a time period, unexpected change in temperature in a room containing laboratory
animals) be recorded. If there are peculiar patterns in the data, detailed notes may point to
possible causes. The necessity for keeping detailed notes is even more crucial in large studies
or experiments involving many investigators; it is difficult for one person to have complete
knowledge of a study.

In a large collaborative study involving a human population, it is not always easy to decide
what data to collect. For example, often there is interest in getting prognostic information. How
many potentially prognostic variables should you record?

Suppose that you are measuring pain relief or quality of life; how many questions do you need
to characterize these abstract ideas reasonably? In looking for complications of drugs, should
you instruct investigators to enter all complications? This may be an unreliable procedure if
you are dependent on a large, diverse group of observers. In studies with many investigators,
each investigator will want to collect data relating to her or his special interests. You can arrive
rapidly at large, complex forms. If too many data are collected, there are various “prices” to
be paid. One obvious price is the expense of collecting and handling large and complex data
sets. Another is reluctance (especially by volunteer subjects) to fill out long, complicated forms,
leading to possible biases in subject recruitment. If a study lasts a long time, the investigators
may become fatigued by the onerous task of data collection. Fatigue and lack of enthusiasm can
affect the quality of data through a lack of care and effort in its collection.

On the other hand, there are many examples where too few data were collected. One of the
most difficult tasks in designing forms is to remember to include all necessary items. The more
complex the situation, the more difficult the task. It is easy to look at existing questions and to
respond to them. If a question is missing, how is one alerted to the fact? One of the authors was
involved in the design of a follow-up form where mortality could not be recorded. There was
an explanation for this: The patients were to fill out the forms. Nevertheless, it was necessary to
include forms that would allow those responsible for follow-up to record mortality, the primary
endpoint of the study.

To assure that all necessary data are on the form, you are advised to follow four steps:

1. Perform a thorough review of all forms with a written response by all participating inves-
tigators.

2. Decide on the statistical analyses beforehand. Check that specific analyses involving spe-
cific variables can be run. Often, the analysis is changed during processing of the data
or in the course of “interactive” data analysis. This preliminary step is still necessary to
ensure that data are available to answer the primary questions.

3. Look at other studies and papers in the area being studied. It may be useful to mimic
analyses in the most outstanding of these papers. If they contain variables not recorded
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in the new study, find out why. The usual reason for excluding variables is that they are
not needed to answer the problems addressed.

4. If the study includes a pilot phase, as suggested below, analyze the data of the pilot phase
to see if you can answer the questions of interest when more data become available.

2.6.2 Clarity of Questions

The task of designing clear and unambiguous questions is much greater than is generally realized.
The following points are of help in designing such questions:

1. Who is filling out the forms? Forms to be filled out by many people should, as much
as possible, be self-explanatory. There should not be another source to which people are
required to go for explanation—often, they would not take the trouble. This need not be
done if trained technicians or interviewers are being used in certain phases of the study.

2. The degree of accuracy and the units required should be specified where possible. For
example, data on heights should not be recorded in both inches and centimeters in the
same place. It may be useful to allow both entries and to have a computer adjust to a
common unit. In this case have two possible entries, one designated as centimeters and
the other designated as inches.

3. A response should be required on all sections of a form. Then if a portion of the form has
no response, this would indicate that the answer was missing. (If an answer is required
only under certain circumstances, you cannot determine whether a question was missed or
a correct “no answer” response was given; a blank would be a valid answer. For example,
in pathology, traditionally the pathologist reports only “positive” findings. If a finding is
absent in the data, was the particular finding not considered, and missed, or was a positive
outcome not there?)

4. There are many alternatives when collecting data about humans: forms filled out by a
subject, an in-person interview by a trained interviewer, a telephone interview, forms
filled out by medical personnel after a general discussion with the subject, or forms filled
out by direct observation. It is an eye-opening experience to collect the “same” data in
several different ways. This leads to a healthy respect for the amount of variability in the
data. It may also lead to clarification of the data being collected. In collecting subjective
opinions, there is usually interaction between a subject and the method of data collection.
This may greatly influence, albeit unconsciously, a subject’s response.

The following points should also be noted. A high level of formal education of subjects
and/or interviewer is not necessarily associated with greater accuracy or reproducibility of data
collected. The personality of a subject and/or interviewer can be more important than the level
of education. The effort and attention given to a particular part of a complex data set should be
proportional to its importance. Prompt editing of data for mistakes produces higher-quality data
than when there is considerable delay between collecting, editing, and correction of forms.

2.6.3 Pretesting of Forms and Pilot Studies

If it is extremely difficult, indeed almost impossible, to design a satisfactory form, how is one
to proceed? It is necessary to have a pretest of the forms, except in the simplest of experiments
and studies. In a pretest, forms are filled out by one or more people prior to beginning an actual
study and data collection. In this case, several points should be considered. People filling out
forms should be representative of the people who will be filling them out during the study. You
can be misled by having health professionals fill out forms that are designed for the “average”
patient. You should ask the people filling out the pretest forms if they have any questions
or are not sure about parts of the forms. However, it is important not to interfere while the
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forms are being used but to let them be used in the same context as will pertain in the study;
then ask the questions. Preliminary data should be analyzed; you should look for differences
in responses from different clinics or individuals. Such analyses may indicate that a variable is
being interpreted differently by different groups. The pretest forms should be edited by those
responsible for the design. Comments written on the forms or answers that are not legitimate
can be important in improving the forms. During this phase of the study, one should pursue
vigorously the causes of missing data.

A more complete approach is to have a pilot study, which consists of going through the actual
mechanics of a proposed study. Thus, a pilot study works out both the “bugs” from forms used
in data collection and operational problems within the study. Where possible, data collected in
a pilot study should be compared with examples of the “same” data collected in other studies.
Suppose that there is recording of data that are not quantitative but categorical (e.g., the amount
of impairment of an animal, whether an animal is losing its hair, whether a patient has improved
morale). There is a danger that the investigator(s) may use a convention that would not readily
be understood by others. To evaluate the extent to which the data collected are understood, it
is good procedure to ask others to examine some of the same study units and to record their
opinion without first discussing what is meant by the categories being recorded. If there is great
variability, this should lead to a need for appropriate caution in the interpretation of the data.
This problem may be most severe when only one person is involved in data collection.

2.6.4 Layout and Appearance

The physical appearance of forms is important if many people are to fill them out. People attach
more importance to a printed page than to a mimeographed page, even though the layout is the
same. If one is depending on voluntary reporting of data, it may be worthwhile to spend a bit
more to have forms printed in several colors with an attractive logo and appearance.

2.7 DATA EDITING AND VERIFICATION

If a study involves many people filling out forms, it will be necessary to have a manual and/or
computer review of the content of the forms before beginning analysis. In most studies there are
inexplicably large numbers of mistakes and missing data. If missing and miscoded data can be
attacked vigorously from the beginning of a study, the quality of data can be vastly improved.
Among checks that go into data editing are the following:

1. Validity checks. Check that only allowable values or codes are given for answers to the
questions. For example, a negative weight is not allowed. A simple extension of this idea
is to require that most of the data fall within a given range; range checks are set so that
a small fraction of the valid data will be outside the range and will be “flagged”; for
example, the height of a professional basketball team center (who happens to be a subject
in the study) may fall outside the allowed range even though the height is correct. By
checking out-of-range values, many incorrectly recorded values can be detected.

2. Consistency checks. There should be internal consistency of the data. Following are some
examples:

a. If more than one form is involved, the dates on these forms should be consistent
with each other (e.g., a date of surgery should precede the date of discharge for that
surgery).

b. Consistency checks can be built into the study by collecting crucial data in two different
ways (e.g., ask for both date of birth and age).

c. If the data are collected sequentially, it is useful to examine unexpected changes
between forms (e.g., changes in height, or drastic changes such as changes of weight
by 70%). Occasionally, such changes are correct, but they should be investigated.
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d. In some cases there are certain combinations of replies that are mutually inconsistent;
checks for these should be incorporated into the editing and verification procedures.

3. Missing forms. In some case—control studies, a particular control may refuse to participate
in a study. Some preliminary data on this control may already have been collected. Some
mechanism should be set up so that it is clear that no further information will be obtained
for that control. (It will be useful to keep the preliminary information so that possible
selection bias can be detected.) If forms are entered sequentially, it will be useful to decide
when missing forms will be labeled “overdue” or “missing.”

2.8 DATA HANDLING

All except the smallest experiments involve data that are eventually processed or analyzed by
computer. Forms should be designed with this fact in mind. It should be easy to enter the form
by keyboard. Some forms are called self-coding: Columns are given next to each variable for
data entry. Except in cases where the forms are to be entered by a variety of people at different
sites, the added cluttering of the form by the self-coding system is not worth the potential ease
in data entry. Experienced persons entering the same type of form over and over soon know
which columns to use. Alternatively, it is possible to overlay plastic sheets that give the columns
for data entry.

For very large studies, the logistics of collecting data, putting the data on a computer system,
and linking records may hinder a study more than any other factor. Although it is not appropriate
to discuss these issues in detail here, the reader should be aware of this problem. In any large
study, people with expertise in data handling and computer management of data should be
consulted during the design phase. Inappropriately constructed data files result in unnecessary
expense and delay during the analytic phase. In projects extending over a long period of time
and requiring periodic reports, it is important that the timing and management of data collection
and management be specified. Experience has shown that even with the best plans there will be
inevitable delays. It is useful to allow some slack time between required submission of forms
and reports, between final submission and data analysis.

Computer files or tapes will occasionally be erased accidentally. In the event of such a
disaster it is necessary to have backup computer tapes and documentation. If information on
individual subject participants is required, there are confidentiality laws to be considered as well
as the investigator’s ethical responsibility to protect subject interests. During the design of any
study, everyone will underestimate the amount of work involved in accomplishing the task.
Experience shows that caution is necessary in estimating time schedules. During a long study,
constant vigilance is required to maintain the quality of data collection and flow. In laboratory
experimentation, technicians may tend to become bored and slack off unless monitored. Clinical
study personnel will tire of collecting the data and may try to accomplish this too rapidly unless
monitored.

Data collection and handling usually involves almost all participants of the study and should
not be underestimated. It is a common experience for research studies to be planned without
allowing sufficient time or money for data processing and analysis. It is difficult to give a rule
of thumb, but in a wide variety of studies, 15% of the expense has been in data handling,
processing, and analysis.

2.9 AMOUNT OF DATA COLLECTED: SAMPLE SIZE

It is part of scientific folklore that one of the tasks of a statistician is to determine an appropriate
sample size for a study. Statistical considerations do have a large bearing on the selection of a
sample size. However, there is other scientific input that must be considered in order to arrive
at the number of experimental units needed. If the purpose of an experiment is to estimate
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some quantity, there is a need to know how precise an estimate is desired and how confident
the investigator wishes to be that the estimate is within a specified degree of precision. If
the purpose of an experiment is to compare several treatments, it is necessary to know what
difference is considered important and how certain the investigator wishes to be of detecting
such a difference. Statistical calculation of sample size requires that all these considerations be
quantified. (This topic is discussed in subsequent chapters.) In a descriptive observational study,
the size of the study is determined by specifying the needed accuracy of estimates of population
characteristics.

2.10 INFERENCES FROM A STUDY

2.10.1 Bias

The statistical term bias refers to a situation in which the statistical method used does not
estimate the quantity thought to be estimated or test the hypothesis thought to be tested. This
definition will be made more precise later. In this section the term is used on a intuitive level.
Consider some examples of biased statistical procedures:

1. A proposal is made to measure the average amount of health care in the United States by
means of a personal health questionnaire that is to be passed out at an American Medical
Association convention. In this case, the AMA respondents constitute a biased sample of
the overall population.

2. A famous historical example involves a telephone poll made during the Dewey—Truman
presidential contest. At that time—and to some extent today—a large section of the
population could not afford a telephone. Consequently, the poll was conducted among
more well-to-do citizens, who constituted a biased sample with respect to presidential
preference.

3. In a laboratory experiment, animals receiving one treatment are kept on one side of the
room and animals receiving a second treatment are kept on another side. If there is a
large differential in lighting and heat between the two sides of the room, one could find
“treatment effects” that were in fact ascribable to differences in light and/or heat. Work
by Riley [1975] suggests that level of stress (e.g., bottom cage vs. top cage) affects the
resistance of animals to carcinogens.

In the examples of Section 1.5, methods of minimizing bias were considered. Single- and
double-blind experiments reduce bias.

2.10.2 Similarity in a Comparative Study

If physicists at Berkeley perform an experiment in electron physics, it is expected that the same
experiment could be performed successfully (given the appropriate equipment) in Moscow or
London. One expects the same results because the current physical model is that all electrons
are precisely the same (i.e., they are identical) and the experiments are truly similar experiments.
In a comparative experiment, we would like to try out experiments on similar units.

We now discuss similarity where it is assumed for the sake of discussion that the experimental
units are humans. The ideas and results, however, can be extended to animals and other types
of experimental units. The experimental situations being compared will be called treatments.
To get a fair comparison, it is necessary that the treatments be given to similar units. For
example, if cancer patients whose disease had not progressed much receive a new treatment and
their survival is compared to the standard treatment administered to all types of patients, the
comparison would not be justified; the treatments were not given to similar groups.
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Of all human beings, identical twins are the most alike, by having identical genetic back-
ground. Often, they are raised together, so they share the same environment. Even in an
observational twin study, a strong scientific inference can be made if enough appropriate pairs
of identical twins can be found. For example, suppose that the two “treatments” are smoking
and nonsmoking. If one had identical twins raised together where one of the pair smoked and
the other did not, the incidence of lung cancer, the general health, and the survival experience
could provide quite strong scientific inferences as to the health effect of smoking. (In Sweden
there is a twin registry to aid public health and medical studies.) It is difficult to conduct twin
studies because sufficient numbers of identical twins need to be located, such that one member
of the pair has one treatment and the other twin, another treatment. It is expensive to identify
and find them. Since they have the same environment, in a smoking study it is most likely, that
either both would smoke or both would not smoke. Such studies are logistically not possible in
most circumstances.

A second approach is that of matching or pairing individuals. The rationale behind matched
or matched pair studies is to find two persons who are identical with regard to all “pertinent”
variables under consideration except the treatment. This may be thought of as an attempt to find
a surrogate identical twin. In many studies, people are matched with regard to age, gender, race,
and some indicator of socioeconomic status. In a prospective study, the two matched individuals
receive differing treatments. In a retrospective study, the person with the endpoint is identified
first (the person usually has some disease); as we have seen, such studies are called case—control
studies. One weakness of such studies is that there may not be a sufficient number of subjects
to make “good” matches. Matching on too many variables makes it virtually impossible to find
a sufficient number of control subjects. No matter how well the matching is done, there is the
possibility that the groups receiving the two treatments (the case and control groups) are not
sufficiently similar because of unrecognized variables.

A third approach is not to match on specific variables but to try to select the subjects on an
intuitive basis. For example, such procedures often select the next person entering the clinic, or
have the patient select a friend of the same gender. The rationale here is that a friend will tend
to belong to the same socioeconomic environment and have the same ethnic characteristics.

Still another approach, even farther removed from the “identical twins” approach, is to select
a group receiving a given treatment and then to select in its entirety a second group as a control.
The hope is that by careful consideration of the problem and good intuition, the control group
will, in some sense, mirror the first treatment group with regard to “all pertinent characteristics”
except the treatment and endpoint. In a retrospective study, the first group usually consists of
cases and a control group selected from the remaining population.

The final approach is to select the two groups in some manner realizing that they will not
be similar, and to measure pertinent variables, such as the variables that one had considered
matching upon, as well as the appropriate endpoint variables. The idea is to make statisti-
cal adjustments to find out what would have happened had the two groups been comparable.
Such adjustments are done in a variety of ways. The techniques are discussed in following
chapters.

None of the foregoing methods of obtaining “valid” comparisons are totally satisfactory.
In the 1920s, Sir Ronald A. Fisher and others made one of the great advances in scientific
methodology—they assigned treatments to patients by chance; that is, they assigned treatments
randomly. The technique is called randomization. The statistical or chance rule of assignment
will satisfy certain properties that are best expressed by the concepts of probability theory. These
concepts are described in Chapter 4. For assignment to two therapies, a coin toss could be used.
A head would mean assignment to therapy 1; a tail would result in assignment to therapy 2.
Each patient would have an equal chance of getting each therapy. Assignments to past patients
would not have any effect on the therapy assigned to the next patient. By the laws of probability,
on the average, treatment groups will be similar. The groups will even be similar with respect
to variables not measured or even thought about! The mathematics of probability allow us to
estimate whether differences in the outcome might be due to the chance assignment to the two



22 BIOSTATISTICAL DESIGN OF MEDICAL STUDIES

groups or whether the differences should be ascribed to true differences between treatments.
These points are discussed in more detail later.

2.10.3 Inference to a Larger Population

Usually, it is desired to apply the results of a study to a population beyond the experimental
units. In an experiment with guinea pigs, the assumption is that if other guinea pigs had been
used, the “same” results would have been found. In reporting good results with a new surgical
procedure, it is implicit that this new procedure is probably good for a wide variety of patients
in a wide variety of clinical settings. To extend results to a larger population, experimental units
should be representative of the larger population. The best way to assure this is to select the
experimental units at random, or by chance, from the larger population. The mechanics and
interpretation of such random sampling are discussed in Chapter 4. Random sampling assures,
on the average, a representative sample. In other instances, if one is willing to make assumptions,
the extension may be valid. There is an implicit assumption in much clinical research that a
treatment is good for almost everyone or almost no one. Many techniques are used initially on
the subjects available at a given clinic. It is assumed that a result is true for all clinics if it
works in one setting.

Sometimes, the results of a technique are compared with “historical” controls; that is, a new
treatment is compared with the results of previous patients using an older technique. The use of
historical controls can be hazardous; patient populations change with time, often in ways that
have much more importance than is generally realized. Another approach with weaker inference
is the use of an animal model. The term animal model indicates that the particular animal is
susceptible to, or suffers from, a disease similar to that experienced by humans. If a treatment
works on the animal, it may be useful for humans. There would then be an investigation in the
human population to see whether the assumption is valid.

The results of an observational study carried out in one country may be extended to other
countries. This is not always appropriate. Much of the “bread and butter” of epidemiology
consists of noting that the same risk factor seems to produce different results in different pop-
ulations, or in noting that the particular endpoint of a disease occurs with differing rates in
different countries. There has been considerable advance in medical science by noting differ-
ent responses among different populations. This is a broadening of the topic of this section:
extending inferences in one population to another population.

2.10.4 Precision and Validity of Measurements

Statistical theory leads to the examination of variation in a method of measurement. The vari-
ation may be estimated by making repeated measurements on the same experimental unit. If
instrumentation is involved, multiple measurements may be taken using more than one of the
instruments to note the variation between instruments. If different observers, interviewers, or
technicians take measurements, a quantification of the variability between observers may be
made. It is necessary to have information on the precision of a method of measurement in
calculating the sample size for a study. This information is also used in considering whether or
not variables deserve repeated measurements to gain increased precision about the true response
of an experimental unit.

Statistics helps in thinking about alternative methods of measuring a quantity. When intro-
ducing a new apparatus or new technique to measure a quantity of interest, validation against
the old method is useful. In considering subjective ratings by different people (even when the
subjective rating is given as a numerical scale), it often turns out that a quantity is not measured
in the same fashion if the measurement method is changed. A new laboratory apparatus may
measure consistently higher than an old one. In two methods of evaluating pain relief, one way
of phrasing a question may tend to give a higher percentage of improvement. Methodologic
statistical studies are helpful in placing interpretations and inferences in the proper context.
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2.10.5 Quantification and Reduction of Uncertainty

Because of variability, there is uncertainty associated with the interpretation of study results.
Statistical theory allows quantification of the uncertainty. If a quantity is being estimated, the
amount of uncertainty in the estimate must be assessed. In considering a hypothesis, one may give
numerical assessment of the chance of occurrence of the results observed when the hypothesis
is true.

Appreciation of statistical methodology often leads to the design of a study with increased
precision and consequently, a smaller sample size. An example of an efficient technique is
the statistical idea of blocking. Blocks are subsets of relatively homogeneous experimental
units. The strategy is to apply all treatments randomly to the units within a particular block.
Such a design is called a randomized block design. The advantage of the technique is that
comparisons of treatments are intrablock comparisons (i.e., comparisons within blocks) and are
more precise because of the homogeneity of the experimental units within the blocks, so that it
is easier to detect treatment differences. As discussed earlier, simple randomization does ensure
similar groups, but the variability within the treatment groups will be greater if no blocking
of experimental units has been done. For example, if age is important prognostically in the
outcome of a comparative trial of two therapies, there are two approaches that one may take. If
one ignores age and randomizes the two therapies, the therapies will be tested on similar groups,
but the variability in outcome due to age will tend to mask the effects of the two treatments.
Suppose that you place people whose ages are close into blocks and assign each treatment by
a chance mechanism within each block. If you then compare the treatments within the blocks,
the effect of age on the outcome of the two therapies will be largely eliminated. A more precise
comparison of the therapeutic effects can be gained. This increased precision due to statistical
design leads to a study that requires a smaller sample size than does a completely randomized
design. However, see Meier et al. [1968] for some cautions.

A good statistical design allows the investigation of several factors at one time with little
added cost (Sir R. A. Fisher as quoted by Yates [1964]):

No aphorism is more frequently repeated with field trials than we must ask Nature a few questions,
or ideally, one question at a time. The writer is convinced that this view is wholly mistaken. Nature,
he suggests, will best respond to a logical and carefully thought out questionnaire; indeed if we ask
her a single question, she will often refuse to answer until some other topic has been discussed.

PROBLEMS

2.1 Consider the following terms defined in Chapters 1 and 2: single blind, double blind,
placebo, observational study, experiment, laboratory experiment, comparative experi-
ment, crossover experiment, clinical study, cohort, prospective study, retrospective study,
case—control study, and matched case—control study. In the examples of section 1.5,
which terms apply to which parts of these examples?

2.2 List possible advantages and disadvantages of a double-blind study. Give some examples
where a double-blind study clearly cannot be carried out; suggest how virtues of “blind-
ing” can still be retained.

2.3 Discuss the ethical aspects of a randomized placebo-controlled experiment. Can you think
of situations where it would be extremely difficult to carry out such an experiment?

2.4 Discuss the advantages of randomization in a randomized placebo-controlled experiment.
Can you think of alternative, possibly better, designs? Consider (at least) the aspects of
bias and efficiency.



24 BIOSTATISTICAL DESIGN OF MEDICAL STUDIES

2.5 This problem involves the design of two questions on “stress” to be used on a data col-
lection form for the population of a group practice health maintenance organization. After
a few years of follow-up, it is desired to assess the effect of physical and psychological
stress.

(a) Design a question that classifies jobs by the amount of physical work involved. Use
eight or fewer categories. Assume that the answer to the question is to be based
on job title. That is, someone will code the answer given a job title.

(b) Same as part (a), but now the classification should pertain to the amount of psy-
chological stress.

(c) Have yourself and (independently) a friend answer your two questions for the
following occupational categories: student, college professor, plumber, waitress,
homemaker, salesperson, unemployed, retired, unable to work (due to illness),
physician, hospital administrator, grocery clerk, prisoner.

(d) What other types of questions would you need to design to capture the total amount
of stress in the person’s life?

2.6 In designing a form, careful distinction must be made between the following categories
of nonresponse to a question: (1) not applicable, (2) not noted, (3) don’t know, (4) none,
and (5) normal. If nothing is filled in, someone has to determine which of the five
categories applies—and often this cannot be done after the interview or the records have
been destroyed. This is particularly troublesome when medical records are abstracted.
Suppose that you are checking medical records to record the number of pregnancies
(gravidity) of a patient. Unless the gravidity is specifically given, you have a problem.
If no number is given, any one of the four categories above could apply. Give two
other examples of questions with ambiguous interpretation of “blank” responses. Devise
a scheme for interview data that is unambiguous and does not require further editing.
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CHAPTER3

Descriptive Statistics

3.1 INTRODUCTION

The beginning of an introductory statistics textbook usually contains a few paragraphs placing
the subject matter in encyclopedic order, discussing the limitations or wide ramifications of
the topic, and tends to the more philosophical rather than the substantive—scientific. Briefly,
we consider science to be a study of the world emphasizing qualities of permanence, order,
and structure. Such a study involves a drastic reduction of the real world, and often, numerical
aspects only are considered. If there is no obvious numerical aspect or ordering, an attempt
is made to impose it. For example, quality of medical care is not an immediately numerically
scaled phenomenon but a scale is often induced or imposed. Statistics is concerned with the
estimation, summarization, and obtaining of reliable numerical characteristics of the world. It
will be seen that this is in line with some of the definitions given in the Notes in Chapter 1.

It may be objected that a characteristic such as the gender of a newborn baby is not numerical,
but it can be coded (arbitrarily) in a numerical way; for example, 0 = male and 1 = female.
Many such characteristics can be labeled numerically, and as long as the code, or the dictionary,
is known, it is possible to go back and forth.

Consider a set of measurements of head circumferences of term infants born in a particular
hospital. We have a quantity of interest—head circumference—which varies from baby to baby,
and a collection of actual values of head circumferences.

Definition 3.1. A variable is a quantity that may vary from object to object.

Definition 3.2. A sample (or data set) is a collection of values of one or more variables.
A member of the sample is called an element.

We distinguish between a variable and the value of a variable in the same way that the label
“title of a book in the library” is distinguished from the title Gray’s Anatomy. A variable will
usually be represented by a capital letter, say, Y, and a value of the variable by a lowercase
letter, say, y.

In this chapter we discuss briefly the types of variables typically dealt with in statistics.
We then go on to discuss ways of describing samples of values of variables, both numerically
and graphically. A key concept is that of a frequency distribution. Such presentations can be
considered part of descriptive statistics. Finally, we discuss one of the earliest challenges to
statistics, how to reduce samples to a few summarizing numbers. This will be considered under
the heading of descriptive statistics.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
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3.2 TYPES OF VARIABLES

3.2.1 Qualitative (Categorical) Variables

Some examples of qualitative (or categorical) variables and their values are:

1. Color of a person’s hair (black, gray, red, ..., brown)

2. Gender of child (male, female)

3. Province of residence of a Canadian citizen (Newfoundland, Nova Scotia, ..., British
Columbia)

4. Cause of death of newborn (congenital malformation, asphyxia, . ..)

Definition 3.3. A qualitative variable has values that are intrinsically nonnumerical (cate-
gorical).

As suggested earlier, the values of a qualitative variable can always be put into numerical
form. The simplest numerical form is consecutive labeling of the values of the variable. The
values of a qualitative variable are also referred to as outcomes or states.

Note that examples 3 and 4 above are ambiguous. In example 3, what shall we do with
Canadian citizens living outside Canada? We could arbitrarily add another “province” with the
label “Outside Canada.” Example 4 is ambiguous because there may be more than one cause of
death. Both of these examples show that it is not always easy to anticipate all the values of a
variable. Either the list of values must be changed or the variable must be redefined.

The arithmetic operation associated with the values of qualitative variables is usually that
of counting. Counting is perhaps the most elementary—but not necessarily simple—operation
that organizes or abstracts characteristics. A count is an answer to the question: How many?
(Counting assumes that whatever is counted shares some characteristics with the other “objects.”
Hence it disregards what is unique and reduces the objects under consideration to a common
category or class.) Counting leads to statements such as “the number of births in Ontario in
1979 was 121,655.”

Qualitative variables can often be ordered or ranked. Ranking or ordering places a set of
objects in a sequence according to a specified scale. In Chapter 2, clinicians ranked interns
according to the quality of medical care delivered. The “objects” were the interns and the scale
was “quality of medical care delivered.” The interns could also be ranked according to their
height, from shortest to tallest—the “objects” are again the interns and the scale is “height.” The
provinces of Canada could be ordered by their population sizes from lowest to highest. Another
possible ordering is by the latitudes of, say, the capitals of each province. Even hair color could
be ordered by the wavelength of the dominant color. Two points should be noted in connection
with ordering or qualitative variables. First, as indicated by the example of the provinces, there
is more than one ordering that can be imposed on the outcomes of a variable (i.e., there is no
natural ordering); the type of ordering imposed will depend on the nature of the variable and the
purpose for which it is studied—if we wanted to study the impact of crowding or pollution in
Canadian provinces, we might want to rank them by population size. If we wanted to study rates
of melanoma as related to amount of ultraviolet radiation, we might want to rank them by the
latitude of the provinces as summarized, say by the latitudes of the capitals or most populous
areas. Second, the ordering need not be complete; that is, we may not be able to rank each
outcome above or below another. For example, two of the Canadian provinces may have virtually
identical populations, so that it is not possible to order them. Such orderings are called partial.

3.2.2 Quantitative Variables

Some examples of quantitative variables (with scale of measurement; values) are the following:

1. Height of father (% inch units; 0.0, 0.5, 1.0, 1.5, ..., 99.0, 99.5, 100.0)
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2. Number of particles emitted by a radioactive source (counts per minute; 0, 1, 2, 3, ...)

3. Total body calcium of a patient with osteoporosis (nearest gram; 0, 1, 2, ..., 9999, 10,000)

4. Survival time of a patient diagnosed with lung cancer (nearest day; O, 1, 2, ..., 19,999,
20,000)

5. Apgar score of infant 60 seconds after birth (counts; 0, 1, 2, ..., 8, 9, 10)
6. Number of children in a family (counts; O, 1, 2, 3, ...)

Definition 3.4. A quantitative variable has values that are intrinsically numerical.

As illustrated by the examples above, we must specify two aspects of a variable: the scale of
measurement and the values the variable can take on. Some quantitative variables have numerical
values that are integers, or discrete. Such variables are referred to as discrete variables. The
variable “number of particles emitted by a radioactive source” is such an example; there are
“gaps” between the successive values of this variable. It is not possible to observe 3.5 particles.
(It is sometimes a source of amusement when discrete numbers are manipulated to produce
values that cannot occur—for example, “the average American family” has 2.125 children).
Other quantitative variables have values that are potentially associated with real numbers—such
variables are called continuous variables. For example, the survival time of a patient diagnosed
with lung cancer may be expressed to the nearest day, but this phrase implies that there has been
rounding. We could refine the measurement to, say, hours, or even more precisely, to minutes
or seconds. The exactness of the values of such a variable is determined by the precision of the
measuring instrument as well as the usefulness of extending the value. Usually, a reasonable
unit is assumed and it is considered pedantic to have a unit that is too refined, or rough to have
a unit that does not permit distinction between the objects on which the variable is measured.
Examples 1, 3, and 4 above deal with continuous variables; those in the other examples are
discrete. Note that with quantitative variables there is a natural ordering (e.g., from lowest to
highest value) (see Note 3.7 for another taxonomy of data).

In each illustration of qualitative and quantitative variables, we listed all the possible values
of a variable. (Sometimes the values could not be listed, usually indicated by inserting three
dots “...” into the sequence.) This leads to:

Definition 3.5. The sample space or population is the set of all possible values of a variable.

The definition or listing of the sample space is not a trivial task. In the examples of qualitative
variables, we already discussed some ambiguities associated with the definitions of a variable
and the sample space associated with the variable. Your definition must be reasonably precise
without being “picky.” Consider again the variable “province of residence of a Canadian citizen”
and the sample space (Newfoundland, Nova Scotia, ..., British Columbia). Some questions that
can be raised include:

. What about citizens living in the Northwest Territories? (Reasonable question)
. Are landed immigrants who are not yet citizens to be excluded? (Reasonable question)
. What time point is intended? Today? January 1, 2000? (Reasonable question)

W N -

. If January 1, 2000 is used, what about citizens who died on that day? Are they to be
included? (Becoming somewhat “picky”)

3.3 DESCRIPTIVE STATISTICS

3.3.1 Tabulations and Frequency Distributions

One of the simplest ways to summarize data is by tabulation. John Graunt, in 1662, published
his observations on bills of mortality, excerpts of which can be found in Newman [1956].
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Table 3.1 Diseases and Casualties in
the City of London 1632

Disease Casualties
Abortive and stillborn 445
Affrighted 1
Aged 628
Ague 43
Crisomes and infants 2268
Tissick 34
Vomiting 1
Worms 27
In all 9535

Source: A selection from Graunt’s tables; from
Newman [1956].

Table 3.1 is a condensation of Graunt’s list of 63 diseases and casualties. Several things should
be noted about the table. To make up the table, three ingredients are needed: (1) a collec-
tion of objects (in this case, humans), (2) a variable of interest (the cause of death), and (3)
the frequency of occurrence of each category. These are defined more precisely later. Sec-
ond, we note that the disease categories are arranged alphabetically (ordering number 1). This
may not be too helpful if we want to look at the most common causes of death. Let us
rearrange Graunt’s table by listing disease categories by greatest frequencies (ordering num-
ber 2).

Table 3.2 lists the 10 most common disease categories in Graunt’s table and summarizes
8274/9535 = 87% of the data in Table 3.1. From Table 3.2 we see at once that “crisomes” is
the most frequent cause of death. (A crisome is an infant dying within one month of birth. Gaunt
lists the number of “christenings™ [births] as 9584, so a crude estimate of neonatal mortality is
2268/9584 = 24%. The symbol “=" means “approximately equal to.”) Finally, we note that
data for 1633 almost certainly would not have been identical to that of 1632. However, the
number in the category “crisomes” probably would have remained the largest. An example of
a statistical question is whether this predominance of “crisomes and infants” has a quality of
permanence from one year to the next.

A second example of a tabulation involves keypunching errors made by a data-entry operator.
To be entered were 156 lines of data, each line containing data on the number of crib deaths
for a particular month in King County, Washington, for the years 1965-1977. Other data on

Table 3.2 Rearrangement of Graunt’s Data (Table 3.1) by the 10 Most Common Causes of Death

Disease Casualties Disease Casualties
Crisomes and infants 2268 Bloody flux, scowring, and flux 348
Consumption 1797 Dropsy and swelling 267
Fever 1108 Convulsion 241
Aged 628 Childbed 171
Flocks and smallpox 531

Teeth 470 Total 8274
Abortive and stillborn 445
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Table 3.3 Number of Keypunching Errors per Line for
156 Consecutive Lines of Data Entered”

o o 1 o0 2 0 0 O 1 0 0 O
0O 0 0 O 1 0 o 1 2 0 0 1
1 0 o 2 0O O O o0 o o0 o0 O
0 1 o o o o o o0 o o0 0 o0
1 o o0 o o0 o o o o o0 o0 o0
o o0 o o0 o o0 0 O 1 0O 0 O
0 1 1 1 1 0 0 O 0 0 O 1
o 1 0 0 1 0 0 o0 o0 2 0 O
! 0 0 0 2 O O 0 0O o0 0 o0
1 0 0 O 1 0 1 o0 o0 O 0 O
1 1 1 o 0 O O O o0 o0 o0 o0
0o 1 0 1 1 0 o0 o O O o0 o
o o o o0 o o 1 o o o0 o0 o

“Each digit represents the number of errors in a line.

a line consisted of meteorological data as well as the total number of births for that month
in King County. Each line required the punching of 47 characters, excluding the spaces. The
numbers of errors per line starting with January 1965 and ending with December 1977 are listed
in Table 3.3.

One of the problems with this table is its bulk. It is difficult to grasp its significance. You
would not transmit this table over the phone to explain to someone the number of errors made.
One way to summarize this table is to specify how many times a particular combination of
errors occurred. One possibility is the following:

Number of Errors Number

per Line of Lines
0 124
1 27
2 5
3 or more 0

This list is again based on three ingredients: a collection of lines of data, a variable (the
number of errors per line), and the frequency with which values of the variable occur. Have we
lost something in going to this summary? Yes, we have lost the order in which the observations
occurred. That could be important if we wanted to find out whether errors came “in bunches”
or whether there was a learning process, so that fewer errors occurred as practice was gained.
The original data are already a condensation. The “number of errors per line” does not give
information about the location of the errors in the line or the type of error. (For educational
purposes, the latter might be very important.)

A difference between the variables of Tables 3.2 and 3.3 is that the variable in the second
example was numerically valued (i.e., took on numerical values), in contrast with the categori-
cally valued variable of the first example. Statisticians typically mean the former when variable
is used by itself, and we will specify categorical variable when appropriate. [As discussed
before, a categorical variable can always be made numerical by (as in Table 3.1) arranging the
values alphabetically and numbering the observed categories 1, 2, 3, . ... This is not biologically
meaningful because the ordering is a function of the language used.]

The data of the two examples above were discrete. A different type of variable is represented
by the age at death of crib death, or SIDS (sudden infant death syndrome), cases. Table 3.4
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Table 3.4 Age at Death (in Days) of 78 Cases of SIDS Occurring in King County, Washington,
1976-1977

225 174 274 164 130 96 102 80 81 148 130 48
68 64 234 24 187 117 42 38 28 53 120 66

176 120 77 79 108 117 96 80 87 85 61 65
68 139 307 185 150 88 108 60 108 95 25 80

143 57 53 90 76 99 29 110 113 67 22 118
47 34 206 104 90 157 80 171 23 92 115 87
42 77 65 45 32 44

Table 3.5 Frequency Distribution of Age at Death of
78 SIDS Cases Occurring in King County, Washington,

1976-1977

Age Interval ~ Number of | Age Interval ~ Number of

(days) Deaths (days) Deaths

1-30 6 211-240 1

31-60 13 241-270 0
61-90 23 271-300 1
91-120 18 301-330 1

121-150 7

151-180 5 Total 78

181-210 3

displays ages at death in days of 78 cases of SIDS in King County, Washington, during the
years 1976-1977. The variable, age at death, is continuous. However, there is rounding to the
nearest whole day. Thus, “68 days” could represent 68.438 ... or 67.8873..., where the three
dots indicate an unending decimal sequence.

Again, the table staggers us by its bulk. Unlike the preceding example, it will not be too
helpful to list the number of times that a particular value occurs: There are just too many
different ages. One way to reduce the bulk is to define intervals of days and count the number
of observations that fall in each interval. Table 3.5 displays the data grouped into 30-day intervals
(months). Now the data make more sense. We note, for example, that many deaths occur between
the ages of 61 and 90 days (two to three months) and that very few deaths occur after 180 days
(six months). Somewhat surprisingly, there are relatively few deaths in the first month of life.
This age distribution pattern is unique to SIDS.

We again note the three characteristics on which Table 3.5 is based: (1) a collection of 78
objects—SIDS cases, (2) a variable of interest—age at death, and (3) the frequency of occurrence
of values falling in specified intervals. We are now ready to define these three characteristics
more explicitly.

Definition 3.6. An empirical frequency distribution (EFD) of a variable is a listing of the
values or ranges of values of the variable together with the frequencies with which these values
or ranges of values occur.

The adjective empirical emphasizes that an observed set of values of a variable is being
discussed; if this is obvious, we may use just “frequency distribution” (as in the heading of
Table 3.5).

The choice of interval width and interval endpoint is somewhat arbitrary. They are usually
chosen for convenience. In Table 3.5, a “natural” width is 30 days (one month) and convenient
endpoints are 1 day, 31 days, 61 days, and so on. A good rule is to try to produce between
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seven and 10 intervals. To do this, divide the range of the values (largest to smallest) by 7, and
then adjust to make a simple interval. For example, suppose that the variable is “weight of adult
male” (expressed to the nearest kilogram) and the values vary from 54 to 115 kg. The range is
115 — 54 = 61 kg, suggesting intervals of width 61/7 = 8.7 kg. This is clearly not a very good
width; the closest “natural” width is 10 kg (producing a slightly coarser grid). A reasonable
starting point is 50 kg, so that the intervals have endpoints 50 kg, 60 kg, 70 kg, and so on.

To compare several EFDs it is useful to make them comparable with respect to the total
number of subjects. To make them comparable, we need:

Definition 3.7. The size of a sample is the number of elements in the sample.

Definition 3.8. An empirical relative frequency distribution (ERFD) is an empirical fre-
quency distribution where the frequencies have been divided by the sample size.

Equivalently, the relative frequency of the value of a variable is the proportion of times that
the value of the variable occurs. (The context often makes it clear that an empirical frequency
distribution is involved. Similarly, many authors omit the adjective relative so that “frequency
distribution” is shorthand for “empirical relative frequency distribution.”)

To illustrate ERFDs, consider the data in Table 3.6, consisting of systolic blood pressures of
three groups of Japanese men: native Japanese, first-generation immigrants to the United States
(Issei), and second-generation Japanese in the United States (Nisei). The sample sizes are 2232,
263, and 1561, respectively.

It is difficult to compare these distributions because the sample sizes differ. The relative
frequencies (proportions) are obtained by dividing each frequency by the corresponding sample
size. The ERFD is presented in Table 3.7. For example, the (empirical) relative frequency of
native Japanese with systolic blood pressure less than 106 mmHg is 218/2232 = 0.098.

It is still difficult to make comparisons. One of the purposes of the study was to determine
how much variables such as blood pressure were affected by environmental conditions. To
see if there is a shift in the blood pressures, we could consider the proportion of men with
blood pressures less than a specified value and compare the groups that way. Consider, for
example, the proportion of men with systolic blood pressures less than or equal to 134 mmHg.
For the native Japanese this is (Table 3.7) 0.098 + 0.122 4+ 0.151 4 0.162 = 0.533, or 53.3%.
For the Issei and Nisei these figures are 0.413 and 0.508, respectively. The latter two figures
are somewhat lower than the first, suggesting that there has been a shift to higher systolic

Table 3.6 Empirical Frequency Distribution
of Systolic Blood Pressure of Native Japanese
and First- and Second-Generation Immigrants
to the United States, Males Aged 45-69 Years

Blood Pressure Native California
(mmHg) Japanese  Issei Nisei
<106 218 4 23
106-114 272 23 132
116-124 337 49 290
126-134 362 33 347
136-144 302 41 346
146-154 261 38 202
156-164 166 23 109
>166 314 52 112
Total 2232 263 1561

Source: Data from Winkelstein et al. [1975].
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Table 3.7 Empirical Relative Frequency Dis-
tribution of Systolic Blood Pressure of Native
Japanese and First- and Second-Generation

Immigrants to the United States, Males Aged

45-69 Years

Blood Pressure Native California
(mmHg) Japanese  Issei Nisei
<106 0.098 0.015 0.015
106-114 0.122 0.087 0.085
116-124 0.151 0.186 0.186
126-134 0.162 0.125 0.222
136-144 0.135 0.156 0.222
146-154 0.117 0.144 0.129
156-164 0.074 0.087 0.070
>166 0.141 0.198 0.072
Total 1.000 0.998 1.001
Sample size (2232) (263) (1561)

Source: Data from Winkelstein et al. [1975].

blood pressure among the immigrants. Whether this shift represents sampling variability or
a genuine shift in these groups can be determined by methods developed in the next three
chapters.

The concept discussed above is formalized in the empirical cumulative distribution.

Definition 3.9. The empirical cumulative distribution (ECD) of a variable is a listing of
values of the variable together with the proportion of observations less than or equal to that
value (cumulative proportion).

Before we construct the ECD for a sample, we need to clear up one problem associated with
rounding of values of continuous variables. Consider the age of death of the SIDS cases of
Table 3.4. The first age listed is 225 days. Any value between 224.5+ and 225.5— is rounded
off to 225 (224.5+ indicates a value greater than 224.5 by some arbitrarily small amount, and
similarly, 225.5— indicates a value less than 225.5). Thus, the upper endpoint of the interval
1-30 days in Table 3.5 is 30.49, or 30.5.

The ECD associated with the data of Table 3.5 is presented in Table 3.8, which contains (1)
the age intervals, (2) endpoints of the intervals, (3) EFD, (4) ERFD, and (5) ECD.

Two comments are in order: (1) there is a slight rounding error in the last column because
the relative frequencies are rounded to three decimal places—if we had calculated from the
frequencies rather than the relative frequencies, this problem would not have occurred; and
(2) given the cumulative proportions, the original proportions can be recovered. For example,
consider the following endpoints and their cumulative frequencies:

150.5 0.860
180.5 0.924

Subtracting, 0.924 — 0.860 = 0.064 produces the proportion in the interval 151-180. Math-
ematically, the ERFD and the ECD are equivalent.



DESCRIPTIVE STATISTICS 33

Table 3.8 Frequency Distribution of Age at Death of 78 SIDS Cases Occurring in King County,
Washington, 1976-1977

Age Interval Endpoint of Number of Relative Frequency Cumulative
(days) Interval (days) Deaths (Proportion) Proportion
1-30 30.5 6 0.077 0.077
31-60 60.5 13 0.167 0.244
61-90 90.5 23 0.295 0.539
91-120 120.5 18 0.231 0.770
121-150 150.5 7 0.090 0.860
151-180 180.5 5 0.064 0.924
181-210 210.5 3 0.038 0.962
211-240 240.5 1 0.013 0.975
241-270 270.5 0 0.000 0.975
271-300 300.5 1 0.013 0.988
301-330 330.5 1 0.013 1.001

Total 78 1.001

3.3.2 Graphs

Graphical displays frequently provide very effective descriptions of samples. In this section we
discuss some very common ways of doing this and close with some examples that are innovative.
Graphs can also be used to enhance certain features of data as well as to distort them. A good
discussion can be found in Huff [1993].

One of the most common ways of describing a sample pictorially is to plot on one axis
values of the variable and on another axis the frequency of occurrence of a value or a mea-
sure related to it. In constructing a histogram a number of cut points are chosen and the
data are tabulated. The relative frequency of observations in each category is divided by
the width of the category to obtain the probability density, and a bar is drawn with this
height. The area of a bar is proportional to the frequency of occurrence of values in the inter-
val.

The most important choice in drawing a histogram is the number of categories, as quite dif-
ferent visual impressions can be conveyed by different choices. Figure 3.1 shows measurements
of albumin, a blood protein, in 418 patients with the liver disease primary biliary cirrhosis, using
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Figure 3.1 Histograms of serum albumin concentration in 418 PBC patients, using two different sets of
categories.
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data made available on the Web by T. M. Therneau of the Mayo Clinic. With five categories the
distribution appears fairly symmetric, with a single peak. With 30 categories there is a definite
suggestion of a second, lower peak. Statistical software will usually choose a sensible default
number of categories, but it may be worth examining other choices.

The values of a variable are usually plotted on the abscissa (x-axis), the frequencies on
the ordinate (y-axis). The ordinate on the left-hand side of Figure 3.1 contains the probability
densities for each category. Note that the use of probability density means that the two histograms
have similar vertical scales despite having different category widths: As the categories become
narrower, the numerator and denominator of the probability density decrease together.

Histograms are sometimes defined so that the y-axis measures absolute or relative frequency
rather than the apparently more complicated probability density. Two advantages arise from the
use of a probability density rather than a simple count. The first is that the categories need not
have the same width: It is possible to use wider categories in parts of the distribution where the
data are relatively sparse. The second advantage is that the height of the bars does not depend
systematically on the sample size: It is possible to compare on the same graph histograms from
two samples of different sizes. It is also possible to compare the histogram to a hypothesized
mathematical distribution by drawing the mathematical density function on the same graph (an
example is shown in Figure 4.7.

Figure 3.2 displays the empirical cumulative distribution (ECD). This is a step function with
jumps at the endpoints of the interval. The height of the jump is equal to the relative frequency of
the observations in the interval. The ECD is nondecreasing and is bounded above by 1. Figure 3.2
emphasizes the discreteness of data. A frequency polygon and cumulative frequency polygon are
often used with continuous variables to emphasize the continuity of the data. A frequency
polygon is obtained by joining the heights of the bars of the histogram at their midpoints. The
frequency polygon for the data of Table 3.8 is displayed in Figure 3.3. A question arises: Where
is the midpoint of the interval? To calculate the midpoint for the interval 31-60 days, we note
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Figure 3.2 Empirical cumulative distribution of SIDS deaths.
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Figure 3.3 Frequency polygon of SIDS deaths.

that the limits of this interval are 30.5-60.5. The midpoint is halfway between these endpoints;
hence, midpoint = (30.5 4+ 60.5)/2 = 45.5 days.

All midpoints are spaced in intervals of 30 days, so that the midpoints are 15.5, 45.5, 75.5,
and so on. To close the polygon, the midpoints of two additional intervals are needed: one to
the left of the first interval (1-30) and one to the right of the last interval observed (301-330),
both of these with zero observed frequencies.

A cumulative frequency polygon is constructed by joining the cumulative relative frequen-
cies observed at the endpoints of their respective intervals. Figure 3.4 displays the cumulative
relative frequency of the SIDS data of Table 3.8. The curve has the value 0.0 below 0.5
and the value 1.0 to the right of 330.5. Both the histograms and the cumulative frequency
graphs implicitly assume that the observations in our interval are evenly distributed over that
interval.

One advantage of a cumulative frequency polygon is that the proportion (or percentage) of
observations less than a specified value can be read off easily from the graph. For example,
from Figure 3.4 it can be seen that 50% of the observations have a value of less than 88 days
(this is the median of the sample). See Section 3.4.1 for further discussion.

EFDs can often be graphed in an innovative way to illustrate a point. Consider the data in
Figure 3.5, which contains the frequency of births per day as related to phases of the moon. Data
were collected by Schwab [1975] on the number of births for two years, grouped by each day of
the 29-day lunar cycle, presented here as a circular distribution where the lengths of the sectors
are proportional to the frequencies. (There is clearly no evidence supporting the hypothesis that
the cycle of the moon influences birth rate.)

Sometimes more than one variable is associated with each of the objects under study. Data
arising from such situations are called multivariate data. A moment’s reflection will convince
you that most biomedical data are multivariate in nature. For example, the variable “blood pres-
sure of a patient” is usually expressed by two numbers, systolic and diastolic blood pressure.
We often specify age and gender of patients to characterize blood pressure more accurately.
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Figure 3.4 Cumulative frequency polygon of SIDS deaths.
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Figure 3.5 Average number of births per day over a 29-day lunar cycle. (Data from Schwab [1975].)

In the multivariate situation, in addition to describing the frequency with which each value of
each variable occurs, we may want to study the relationships among the variables. For example,
Table 1.2 and Figure 1.1 attempt to assess the relationship between the variables “clinical com-
petence” and “cost of laboratory procedures ordered” of interns. Graphs of multivariate data
will be found throughout the book.
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Figure 3.6 Survival time in primary biliary cirrhosis by serum albumin concentrations. Large circles are
deaths, small circles are patients alive at last contact. (Data from Fleming and Harrington [1991].)

Here we present a few examples of visually displaying values of several variables at the
same time. A simple one relates the serum albumin values from Figure 3.1 to survival time in
the 418 patients. We do not know the survival times for everyone, as some were still alive at the
end of the study. The statistical analysis of such data occupies an entire chapter of this book,
but a simple descriptive graph is possible. Figure 3.6 shows large circles at survival time for
patients who died. For those still alive it shows small circles at the last time known alive. For
exploratory analysis and presentation these could be indicated by different colors, something
that is unfortunately still not feasible for this book.

Another simple multivariate example can be found in our discussion of factor analysis.
Figure 14.7 shows a matrix of correlations between variables using shaded circles whose size
shows the strength of the relationship and whose shading indicates whether the relationship is
positive or negative. Figure 14.7 is particularly interesting, as the graphical display helped us
find an error that we missed in the first edition.

A more sophisticated example of multivariate data graphics is the conditioning plot [Cleve-
land, 1993]. This helps you examine how the relationship between two variables depends on
a third. Figure 3.7 shows daily data on ozone concentration and sunlight in New York, during
the summer of 1973. These should be related monotonically; ozone is produced from other
pollutants by chemical reactions driven by sunlight. The four panels show four plots of ozone
concentration vs. solar radiation for various ranges of temperature. The shaded bar in the title of
each plot indicates the range of temperatures. These ranges overlap, which allows more panels
to be shown without the data becoming too sparse. Not every statistical package will produce
these coplots with a single function, but it is straightforward to draw them by taking appropriate
subsets of your data.

The relationship clearly varies with temperature. At low temperatures there is little rela-
tionship, and as the temperature increases the relationship becomes stronger. Ignoring the
effect of temperature and simply graphing ozone and solar radiation results in a more con-
fusing relationship (examined in Figure 3.9). In Problem 10 we ask you to explore these data
further.
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For beautiful books on the visual display of data, see Tufte [1990, 1997, 2001]. A very read-
able compendium of graphical methods is contained in Moses [1987], and more recent methods
are described by Cleveland [1994]. Wilkinson [1999] discusses the structure and taxonomy of
graphs.

3.4 DESCRIPTIVE STATISTICS

In Section 3.3 our emphasis was on tabular and visual display of data. It is clear that these
techniques can be used to great advantage when summarizing and highlighting data. However,
even a table or a graph takes up quite a bit of space, cannot be summarized in the mind too
easily, and particularly for a graph, represents data with some imprecision. For these and other
reasons, numerical characteristics of data are calculated routinely.

Definition 3.10. A sratistic is a numerical characteristic of a sample.

One of the functions of statistics as a field of study is to describe samples by as few numerical
characteristics as possible. Most numerical characteristics can be classified broadly into statistics
derived from percentiles of a frequency distribution and statistics derived from moments of a
frequency distribution (both approaches are explained below). Roughly speaking, the former
approach tends to be associated with a statistical methodology usually termed nonparametric, the
latter with parametric methods. The two classes are used, contrasted, and evaluated throughout
the book.

3.4.1 Statistics Derived from Percentiles

A percentile has an intuitively simple meaning—for example, the 25th percentile is that value of
a variable such that 25% of the observations are less than that value and 75% of the observations
are greater. You can supply a similar definition for, say, the 75th percentile. However, when we
apply these definitions to a particular sample, we may run into three problems: (1) small sample
size, (2) tied values, or (3) nonuniqueness of a percentile. Consider the following sample of four
observations:

22,22,24,27

How can we define the 25th percentile for this sample? There is no value of the variable with this
property. But for the 75th percentile, there is an infinite number of values—for example, 24.5,
25, and 26.9378 all satisfy the definition of the 75th percentile. For large samples, these problems
disappear and we will define percentiles for small samples in a way that is consistent with the
intuitive definition. To find a particular percentile in practice, we would rank the observations
from smallest to largest and count until the proportion specified had been reached. For example,
to find the 50th percentile of the four numbers above, we want to be somewhere between the
second- and third-largest observation (between the values for ranks 2 and 3). Usually, this value
is taken to be halfway between the two values. This could be thought of as the value with rank
2.5—call this a half rank. Note that

50
25 = (ﬁ) (1 + sample size)

You can verify that the following definition is consistent with your intuitive understanding of
percentiles:

Definition 3.11. The Pth percentile of a sample of n observations is that value of the
variable with rank (P/100)(1 + n). If this rank is not an integer, it is rounded to the nearest
half rank.
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The following data deal with the aflatoxin levels of raw peanut kernels as described by Que-
senberry et al. [1976]. Approximately 560 g of ground meal was divided among 16 centrifuge
bottles and analyzed. One sample was lost, so that only 15 readings are available (measurement
units are not given). The values were

30, 26, 26, 36, 48, 50, 16, 31, 22, 27, 23, 35, 52, 28, 37

The 50th percentile is that value with rank (50/100)(1 + 15) = 8. The eighth largest (or
smallest) observation is 30. The 25th percentile is the observation with rank (25/100)(1+15) =
4, and this is 26. Similarly, the 75th percentile is 37. The 10th percentile (or decile) is that value
with rank (10/100)(1 + 15) = 1.6, so we take the value halfway between the smallest and
second-smallest observation, which is (1/2)(16 4+ 22) = 19. The 90th percentile is the value
with rank (90/100)(1 + 15) = 14.4; this is rounded to the nearest half rank of 14.5. The value
with this half rank is (1/2)(50 + 52) = 51.

Certain percentile or functions of percentiles have specific names:

Percentile Name
50 Median
25 Lower quartile
75 Upper quartile

All these statistics tell something about the location of the data. If we want to describe how
spread out the values of a sample are, we can use the range of values (largest minus smallest),
but a problem is that this statistic is very dependent on the sample size. A better statistic is
given by:

Definition 3.12. The interquartile range (IQR) is the difference between the 75th and 25th
percentiles.

For the aflatoxin example, the interquartile range is 37 — 26 = 11. Recall the range of a
set of numbers is the largest value minus the smallest value. The data can be summarized as
follows:

Median 30
Minimum 16 Measures of location
Maximum 52

Interquartile range 11

} Measures of spread
Range 36

The first three measures describe the location of the data; the last two give a description
of their spread. If we were to add 100 to each of the observations, the median, minimum, and
maximum would be shifted by 100, but the interquartile range and range would be unaffected.

These data can be summarized graphically by means of a box plot (also called a box-and-
whisker plot). A rectangle with upper and lower edges at the 25th and 75th percentiles is drawn
with a line in the rectangle at the median (50th percentile). Lines (whiskers) are drawn from the
rectangle (box) to the highest and lowest values that are within 1.5 x IQR of the median; any
points more extreme than this are plotted individually. This is Tukey’s [1977] definition of the
box plot; an alternative definition draws the whiskers from the quartiles to the maximum and
minimum.
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Figure 3.8 Box plot.

The box plot for these data (Figure 3.8) indicates that 50% of the data between the lower
and upper quartiles is distributed over a much narrower range than the remaining 50% of the
data. There are no extreme values outside the “fences” at median £ 1.5 x IQR.

3.4.2 Statistics Derived from Moments

The statistics discussed in Section 3.4.1 dealt primarily with describing the location and the
variation of a sample of values of a variable. In this section we introduce another class of
statistics, which have a similar purpose. In this class are the ordinary average, or arithmetic
mean, and standard deviation. The reason these statistics are said to be derived from moments
is that they are based on powers or moments of the observations.

Definition 3.13. The arithmetic mean of a sample of values of a variable is the average of
all the observations.

Consider the aflatoxin data mentioned in Section 3.4.1. The arithmetic mean of the data is

2642 42 7 487 —
30+ 26 + 6;1—5 +28+3 :%:32.46i32.5

A reasonable rule is to express the mean with one more significant digit than the observations,
hence we round 32.46—a nonterminating decimal—to 32.5. (See also Note 3.2 on significant
digits and rounding.)

Notation. The specification of some of the statistics to be calculated can be simplified by
the use of notation. We use a capital letter for the name of a variable and the corresponding
lowercase letter for a value. For example, Y = aflatoxin level (the name of the variable); y = 30
(the value of aflatoxin level for a particular specimen). We use the Greek symbol Y to mean
“sum all the observations.” Thus, for the aflatoxin example, > y is shorthand for the statement
“sum all the aflatoxin levels.” Finally, we use the symbol y to denote the arithmetic mean of
the sample. The arithmetic mean of a sample of n values of a variable can now be written as

For example, >y = 487,n = 15, and y = 487/15 = 32.5. Consider now the variable
of Table 3.3: the number of keypunching errors per line. Suppose that we want the average
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Table 3.9 Calculation of Arithmetic Average from
Empirical Frequency and Empirical Relative Frequency
Distribution?

Number of Errors ~ Number of  Proportion of

per Line, y Lines, f Lines, p P Xy
0 124 0.79487 0.00000
1 27 0.17308 0.17308
2 5 0.03205 0.06410
3 0 0.00000 0.00000
Total 156 1.00000 0.23718

“Data from Table 3.3.

number of errors per line. By definition, this is (0+0+1+04+24---+0+04+040)/156 =
37/156 = 0.2 error per line. But this is a tedious way to calculate the average. A simpler
way utilizes the frequency distribution or relative frequency distribution.

The total number of errors is (124 x 0) + (27 x 1) 4+ (5 x 2) + (0 x 3) = 37; that is, there
are 124 lines without errors; 27 lines each of which contains one error, for a total of 27 errors
for these types of lines; and 5 lines with two errors, for a total of 10 errors for these types of
lines; and finally, no lines with 3 errors (or more). So the arithmetic mean is

_Ef_ Xy
> f n

since the frequencies, f, add up to n, the sample size. Here, the sum ) fy is over observed
values of y, each value appearing once.

The arithmetic mean can also be calculated from the empirical relative frequencies. We use
the following algebraic property:

SR SR e M

The f/n are precisely the empirical relative frequencies or proportions, p. The calculations using
proportions are given in Table 3.9. The value obtained for the sample mean is the same as before.
The formula y = > py will be used extensively in Chapter 4 when we come to probability
distributions. If the values y represent the midpoints of intervals in an empirical frequency
distribution, the mean of the grouped data can be calculated in the same way.

Analogous to the interquartile range there is a measure of spread based on sample moments.

<l

Definition 3.14. The standard deviation of a sample of n values of a variable Y is

oo Y (y—)?
o n—1

Roughly, the standard deviation is the square root of the average of the square of the devia-
tions from the sample mean. The reason for dividing by n — 1 is explained in Note 3.5. Before
giving an example, we note the following properties of the standard deviation:

1. The standard deviation has the same units of measurement as the variable. If the obser-
vations are expressed in centimeters, the standard deviation is expressed in centimeters.
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Cartoon 3.1 Variation is important: statistician drowning in a river of average depth 10.634 inches.

2. If a constant value is added to each of the observations, the value of the standard deviation
is unchanged.

3. If the observations are multiplied by a positive constant value, the standard deviation is
multiplied by the same constant value.

4. The following two formulas are sometimes computationally more convenient in calculat-
ing the standard deviation by hand:

S =
n—1 n—1

>y -y :\/Zyz—@yﬂ/n

Rounding errors accumulate more rapidly using these formulas; care should be taken to
carry enough significant digits in the computation.

5. The square of the standard deviation is called the variance.
6. In many situations the standard deviation can be approximated by

interquartile range
1.35

7. In many cases it is true that approximately 68% of the observations fall within one
standard deviation of the mean; approximately 95% within two standard deviations.

3.4.3 Graphs Based on Estimated Moments

One purpose for drawing a graph of two variables X and Y is to decide how Y changes as X
changes. Just as statistics such as the mean help summarize the location of one or two samples,
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they can be used to summarize how the location of ¥ changes with X. A simple way to do this
is to divide the data into bins and compute the mean or median for each bin.

Example 3.1. Consider the New York air quality data in Figure 3.7. When we plot ozone
concentrations against solar radiation without conditioning variables, there is an apparent trian-
gular relationship. We might want a summary of this relationship rather than trying to assess it
purely by eye. One simple summary is to compute the mean ozone concentration for various
ranges of solar radiation. We compute the mean ozone for days with solar radiation 0-50 lang-
leys, 50-150, 100-200, 150-250, and so on. Plotting these means at the midpoint of the interval
and joining the dots gives the dotted line shown in Figure 3.9.

Modern statistical software provides a variety of different scatter plot smoothers that perform
more sophisticated versions of this calculation. The technical details of these are complicated,
but they are conceptually very similar to the local means that we used above. The solid line in
Figure 3.9 is a popular scatter plot smoother called lowess [Cleveland, 1981].

3.4.4 Other Measures of Location and Spread

There are many other measures of location and spread. In the former category we mention the
mode and the geometric mean.

Definition 3.15. The mode of a sample of values of a variable Y is that value that occurs
most frequently.

The mode is usually calculated for large sets of discrete data. Consider the data in Table 3.10,
the distribution of the number of boys per family of eight children. The most frequently occurring
value of the variable Y, the number of boys per family of eight children, is 4. There are more
families with that number of boys than any other specified number of boys. For data arranged in
histograms, the mode is usually associated with the midpoint of the interval having the highest
frequency. For example, the mode of the systolic blood pressure of the native Japanese men
listed in Table 3.6 is 130 mmHg; the modal value for Issei is 120 mmHg.

Definition 3.16. The geometric mean of a sample of nonnegative values of a variable Y is
the nth root of the product of the n values, where n is the sample size.

Equivalently, it is the antilogarithm of the arithmetic mean of the logarithms of the values.
(See Note 3.1 for a brief discussion of logarithms.)
Consider the following four observations of systolic blood pressure in mmHg:

118,120, 122, 160

The arithmetic mean is 130 mmHg, which is larger than the first three values because the
160 mmHg value “pulls” the mean to the right. The geometric mean is (118 x 120 x 122 x
160)!/4 = 128.9 mmHg. The geometric mean is less affected by the extreme value of 160 mmHg.
The median is 121 mmHg. If the value of 160 mmHg is changed to a more extreme value, the
mean will be affected the most, the geometric mean somewhat less, and the median not at all.

Two other measures of spread are the average deviation and median absolute deviation
(MAD). These are related to the standard deviation in that they are based on a location measure
applied to deviations. Where the standard deviation squares the deviations to make them all
positive, the average deviation takes the absolute value of the deviations (just drops any minus
signs).

Definition 3.17. The average deviation of a sample of values of a variable is the arithmetic
average of the absolute values of the deviations about the sample mean.
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Figure 3.9 Ozone and solar radiation in New York during the summer of 1973, with scatter plot smoothers.

Table 3.10 Number of Boys in Families of Eight

Children

Number of Boys
per Family of
Eight Children

Empirical
Frequency
(Number

of Families)

Empirical Relative

Frequency
of Families

0NN N R W~ O

Total

215
1,485
5,331

10, 649
14,959
11,929
6,678
2,092

342

53,680

0.0040
0.0277
0.0993
0.1984
0.2787
0.2222
0.1244
0.0390
0.0064

1.0000

Source: Geissler’s data reprinted in Fisher [1958].

Using symbols, the average deviation can be written as

average deviation =

ly =73l
n

The median absolute deviation takes the deviations from the median rather than the mean,
and takes the median of the absolute values of these deviations.
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Definition 3.18. The median absolute deviation of a sample of values of a variable is the
median of the absolute values of the deviations about the sample median.

Using symbols, the median absolute deviation can be written as
MAD = median {|y — median{y}|}

The average deviation and the MAD are substantially less affected by extreme values than
is the standard deviation.

3.4.5 Which Statistics?

Table 3.11 lists the statistics that have been defined so far, categorized by their use. The question
arises: Which statistic should be used for a particular situation? There is no simple answer
because the choice depends on the data and the needs of the investigator. Statistics derived from
percentiles and those derived from moments can be compared with respect to:

1. Scientific relevance. In some cases the scientific question dictates or at least restricts the
choice of statistic. Consider a study conducted by the Medicare program being on the effects
of exercise on the amount of money expended on medical care. Their interest is in whether
exercise affects total costs, or equivalently, whether it affects the arithmetic mean. A researcher
studying serum cholesterol levels and the risk of heart disease might be more interested in
the proportions of subjects whose cholesterol levels fell in the various categories defined by
the National Cholesterol Education Program. In a completely different field, Gould [1996] dis-
cusses the absence of batting averages over 0.400 in baseball in recent years and shows that
considering a measure of spread rather than a measure of location provides a much clearer
explanation

2. Robustness. The robustness of a statistic is related to its resistance to being affected by
extreme values. In Section 3.4.4 it was shown that the mean—as compared to the median and
geometric mean—is most affected by extreme values. The median is said to be more robust.
Robustness may be beneficial or harmful, depending on the application: In sampling pollution
levels at an industrial site one would be interested in a statistic that was very much affected by
extreme values. In comparing cholesterol levels between people on different diets, one might
care more about the typical value and not want the results affected by an occasional extreme.

3. Mathematical simplicity. The arithmetic mean is more appropriate if the data can be
described by a particular mathematical model: the normal or Gaussian frequency distribution,
which is the basis for a large part of the theory of statistics. This is described in Chapter 4.

4. Computational Ease. Historically, means were easier to compute by hand for moderately
large data sets. Concerns such as this vanished with the widespread availability of computers
but may reappear with the very large data sets produced by remote sensing or high-throughput
genomics. Unfortunately, it is not possible to give general guidelines as to which statistics

Table 3.11 Statistics Defined in This Chapter

Location Spread
Median Interquartile range
Percentile Range

Arithmetic mean Standard deviation
Geometric mean Average deviation

Mode Median absolute deviation
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will impose less computational burden. You may need to experiment with your hardware and
software if speed or memory limitations become important.

5. Similarity. In many samples, the mean and median are not too different. If the empirical
frequency distribution of the data is almost symmetrical, the mean and the median tend to be
close to each other.

In the absence of specific reasons to chose another statistic, it is suggested that the median and
mean be calculated as measures of location and the interquartile range and standard deviation as
measures of spread. The other statistics have limited or specialized use. We discuss robustness
further in Chapter 8.

NOTES

3.1 Logarithms

A logarithm is an exponent on a base. The base is usually 10 or e (2.71828183...). Logarithms
with base 10 are called common logarithms; logarithms with base e are called natural logarithms.
To illustrate these concepts, consider

That is, the logarithm to the base 10 of 100 is 2, usually written
and the logarithm of 100 to the base e is

log,(100) = 4.605170. ..
The three dots indicate that the number is an unending decimal expansion. Unless other-
wise stated, logarithms herein will always be natural logarithms. Other bases are sometimes
useful—in particular, the base 2. In determining hemagglutination levels, a series of dilutions
of serum are set, each dilution being half of the preceding one. The dilution series may be

1:1,1:2,1:4,1:8,1:16,1:32, and so on. The logarithm of the dilution factor using the base
2 is then simply

log,(1) =0
log,(2) =1
log,(4) =2
log,(8) =3

log,(16) = 4 etc.

The following properties of logarithms are the only ones needed in this book. For simplicity,
we use the base e, but the operations are valid for any base.

1. Multiplication of numbers is equivalent to adding logarithms (¢ x e? = e21?).

2. The logarithm of the reciprocal of a number is the negative of the logarithm of the number
(1/e* =e™).

3. Rule 2 is a special case of this rule: Division of numbers is equivalent to subtracting
logarithms (e?/eb = b)),
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Most pocket calculators permit rapid calculations of logarithms and antilogarithms. Tables
are also available. You should verify that you can still use logarithms by working a few problems
both ways.

3.2 Stem-and-Leaf Diagrams

An elegant way of describing data by hand consists of stem-and-leaf diagrams (a phrase coined
by J. W. Tukey [1977]; see his book for some additional innovative methods of describing data).
Consider the aflatoxin data from Section 3.4.1. We can tabulate these data according to their
first digit (the “stem”) as follows:

Stem Leaf Stem Leaf
(tens) (units) (tens)  (units)
1 6 4 8
2 662738 5 02

3 06157

For example, the row 3|06157 is a description of the observations 30, 36, 31, 35, and 37. The
most frequently occurring category is the 20s. The smallest value is 16, the largest value, 52.

A nice feature of the stem-and-leaf diagram is that all the values can be recovered (but
not in the sequence in which the observations were made). Another useful feature is that a
quick ordering of the observations can be obtained by use of a stem-and-leaf diagram. Many
statistical packages produce stem-and-leaf plots, but there appears to be little point to this, as the
advantages over histograms or empirical frequency distributions apply only to hand computation.

3.3 Color and Graphics

With the wide availability of digital projectors and inexpensive color inkjet printers, there are
many more opportunities for statisticians to use color to annotate and extend graphs. Differences
in color are processed “preattentively” by the brain—they “pop out” visually without a conscious
search. It is still important to choose colors wisely, and many of the reference books we list
discuss this issue. Colored points and lines can be bright, intense colors, but large areas should
use paler, less intense shades. Choosing colors to represent a quantitative variable is quite
difficult, and it is advisable to make use of color schemes chosen by experts, such as those at
http://colorbrewer.org.

Particular attention should be paid to limitations on the available color range. Color graphs
may be photocopied in black and white, and might need to remain legible. LCD projectors may
have disappointing color saturation. Ideas and emotions associated with a particular color might
vary in different societies. Finally, it is important to remember that about 7% of men (and almost
no women) cannot distinguish red and green. The Web appendix contains a number of links on
color choice for graphics.

3.4 Significant Digits: Rounding and Approximation

In working with numbers that are used to estimate some quantity, we are soon faced with the
question of the number of significant digits to carry or to report. A typical rule is to report the
mean of a set of observations to one more place and the standard deviation to two more places
than the original observation. But this is merely a guideline—which may be wrong. Following
DeLury [1958], we can think of two ways in which approximation to the value of a quantity can
arise: (1) through arithmetical operations only, or (2) through measurement. If we express the
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mean of the three numbers 140, 150, and 152 as 147.3, we have approximated the exact mean,
147%, so that there is rounding error. This error arises purely as the result of the arithmetical
operation of division. The rounding error can be calculated exactly: 147.3 — 147.3 = 0.03.

But this is not the complete story. If the above three observations are the weights of three
teenage boys measured to the nearest pound, the true average weight can vary all the way from
146.83 to 147.83 pounds; that is, the recorded weights (140, 150, 152) could vary from the three
lowest values (139.5, 149.5, 151.5) to the three highest values (140.5, 150.5, 152.5), producing
the two averages above. This type of rounding can be called measurement rounding. Knowledge
of the measurement operation is required to assess the extent of the measurement rounding error:
If the three numbers above represent systolic blood pressure readings in mmHg expressed to the
nearest even number, you can verify that the actual arithmetic mean of these three observations
can vary from 146.33 to 148.33, so that even the third “significant” digit could be in error.

Unfortunately, we are not quite done yet with assessing the extent of an approximation. If
the weights of the three boys are a sample from populations of boys and the population mean
is to be estimated, we will also have to deal with sampling variability (a second aspect of
the measurement process), and the effect of sampling variability is likely to be much larger
than the effect of rounding error and measurement roundings. Assessing the extent of sampling
variability is discussed in Chapter 4.

For the present time, we give you the following guidelines: When calculating by hand, min-
imize the number of rounding errors in intermediate arithmetical calculations. So, for example,
instead of calculating

> -9’

in the process of calculating the standard deviation, use the equivalent relationship

, »?
Y 2

You should also note that we are more likely to use approximations with the arithmetical
operations of division and the taking of square roots, less likely with addition, multiplication,
and subtraction. So if you can sequence the calculations with division and square root being
last, rounding errors due to arithmetical calculations will have been minimized. Note that the
guidelines for a computer would be quite different. Computers will keep a large number of digits
for all intermediate results, and guidelines for minimizing errors depend on keeping the size of
the rounding errors small rather than the number of occasions of rounding.

The rule stated above is reasonable. In Chapter 4 you will learn a better way of assessing
the extent of approximation in measuring a quantity of interest.

3.5 Degrees of Freedom

The concept of degrees of freedom appears again and again in this book. To make the concept
clear, we need the idea of a linear constraint on a set of numbers; this is illustrated by several
examples. Consider the numbers of girls, X, and the number of boys, Y, in a family. (Note
that X and Y are variables.) The numbers X and Y are free to vary and we say that there are
two degrees of freedom associated with these variables. However, suppose that the total number
of children in a family, as in the example, is specified to be precisely 8. Then, given that the
number of girls is 3, the number of boys is fixed—namely, 8 — 3 = 5. Given the constraint on
the total number of children, the two variables X and Y are no longer both free to vary, but
fixing one determines the other. That is, now there is only one degree of freedom. The constraint
can be expressed as
X+Y =8 sothat ¥ =8—-X

Constraints of this type are called linear constraints.
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Table 3.12 Frequency Distribution of Form
and Color of 556 Garden Peas

Variable 1: Form

Variable 2: Color Round Wrinkled Total

Yellow 315 101 416
Green 108 32 140
Total 423 133 556

Source: Data from Mendel [1911].

A second example is based on Mendel’s work in plant propagation. Mendel [1911] reported
the results of many genetic experiments. One data set related two variables: form and color.
Table 3.12 summarizes these characteristics for 556 garden peas. Let A, B, C, and D be the
numbers of peas as follows:

Form

Color Round Wrinkled

Yellow A B
Green C D

For example, A is the number of peas that are round and yellow. Without restrictions, the
numbers A, B, C and D can be any nonnegative integers: There are four degrees of freedom.
Suppose now that the total number of peas is fixed at 556 (as in Table 3.12). That is, A + B +
C + D = 556. Now only three of the numbers are free to vary. Suppose, in addition, that the
number of yellows peas is fixed at 416. Now only two numbers can vary; for example, fixing A
determines B, and fixing C determines D. Finally, if the numbers of round peas is also fixed,
only one number in the table can be chosen. If, instead of the last constraint on the number
of round peas, the number of green peas had been fixed, two degrees would have remained
since the constraints “number of yellow peas fixed” and “number of green peas fixed” are not
independent, given that the total number of peas is fixed.

These results can be summarized in the following rule: Given a set of N quantities and
M (< N) linear, independent constraints, the number of degrees of freedom associated with the
N quantities is N — M. It is often, but not always, the case that degrees of freedom can be
defined in the same way for nonlinear constraints.

Calculations of averages will almost always involve the number of degrees of freedom
associated with a statistic rather than its number of components. For example, the quantity
3" (y —¥)? used in calculating the standard deviation of a sample of, say, n values of a variable
Y has n — 1 degrees of freedom associated with it because Y (y —¥) = 0. That is, the sum of
the deviations about the mean is zero.

3.6 Moments

Given a sample of observations yi, y2, ..., y, of a variable Y, the rth sample moment about
zero, m}, is defined to be

r

p
m*:z—y forr=1,2,3,...
n

For example, m¥ =Y y'/n =3 y/n =7 is just the arithmetic mean.
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The rth sample moment about the mean, m,, is defined to be

_ 2=y

n

forr =1,2,3,...

r

The value of m; is zero (see Problem 3.15). It is clear that m, and s2 (the sample variance)
are closely connected. For a large number of observations, m, will be approximately equal to
s2. One of the earliest statistical procedures (about 1900) was the method of moments of Karl
Pearson. The method specified that all estimates derived from a sample should be based on
sample moments. Some properties of moments are:

e m =0.

e Odd-numbered moments about the mean of symmetric frequency distributions are equal
to zero.

e A unimodal frequency distribution is skewed to the right if the mean is greater than the
mode; it is skewed to the left if the mean is less than the mode. For distributions skewed
to the right, m3 > 0; for distributions skewed to the left, m3 < 0.

The latter property is used to characterize the skewness of a distribution, defined by

Y —y)? ms3

TR0 -2 T )2

as

The division by (m2)3/? is to standardize the statistic, which now is unitless. Thus, a set of
observations expressed in degrees Fahrenheit will have the same value of a3 when expressed
in degrees Celsius. Values of a3 > 0 indicate positive skewness, skewness to the right, whereas
values of a3 < 0 indicate negative skewness. Some typical curves and corresponding values for
the skewness statistics are illustrated in Figure 3.10. Note that all but the last two frequency
distributions are symmetric; the last figure, with skewness a3 = —2.71, is a mirror image of the
penultimate figure, with skewness az = 2.71.

The fourth moment about the mean is involved in the characterization of the flatness or
peakedness of a distribution, labeled kurtosis (degree of archedness); a measure of kurtosis is
defined by

XY=t my
ay

T =M (m)?

Again, as in the case of a3, the statistic is unitless. The following terms are used to characterize
values of a4.

as =3  mesokurtic: the value for a bell-shaped
distribution (Gaussian or normal distribution)

as <3  leptokurtic: thin or peaked shape (or “light tails”)

as >3 platykurtic: flat shape (or “heavy tails”)

Values of this statistic associated with particular frequency distribution configurations are illus-
trated in Figure 3.10. The first figure is similar to a bell-shaped curve and has a value as = 3.03,
very close to 3. Other frequency distributions have values as indicated. It is meaningful to speak
of kurtosis only for symmetric distributions.

3.7 Taxonomy of Data

Social scientists have thought hard about types of data. Table 3.13 summarizes a fairly standard
taxonomy of data based on the four scales nominal, ordinal, interval, and ratio. This table is to
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a,=0
a,=1.78

Figure 3.10 Values of skewness (a3) and kurtosis (a4) for selected data configurations.

Table 3.13 Standard Taxonomy of Data

Characteristic Statistic
Scale Question Statistic to Be Used
Nominal Do A and B differ? List of diseases; marital status Mode
Ordinal Is A bigger (better) than B? Quality of teaching (unacceptable/acceptable) Median
Interval How much do A and B differ?  Temperatures; dates of birth Mean
Ratio How many times is A bigger  Distances; ages; heights Mean
than B?

be used as a guide only. You can be too rigid in applying this scheme (as unfortunately, some
academic journals are). Frequently, ordinal data are coded in increasing numerical order and
averages are taken. Or, interval and ratio measurements are ranked (i.e., reduced to ordinal status)
and averages taken at that point. Even with nominal data, we sometimes calculate averages. For
example: coding male = 0, female = 1 in a class of 100 students, the average is the proportion
of females in the class. Most statistical procedures for ordinal data implicitly use a numerical
coding scheme, even if this is not made clear to the user. For further discussion, see Luce and
Narens [1987], van Belle [2002], and Velleman and Wilkinson [1993].

PROBLEMS

3.1 Characterize the following variables and classify them as qualitative or quantitative.
If qualitative, can the variable be ordered? If quantitative, is the variable discrete or
continuous? In each case define the values of the variable: (1) race, (2) date of birth, (3)
systolic blood pressure, (4) intelligence quotient, (5) Apgar score, (6) white blood count,
(7) weight, and (8) quality of medical care.
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3.2

33

34

35

3.6

3.7

3.8

3.9

For each variable listed in Problem 3.1, define a suitable sample space. For two of the
sample spaces so defined, explain how you would draw a sample. What statistics could
be used to summarize such a sample?

Many variables of medical interest are derived from (functions of) several other variables.
For example, as a measure of obesity there is the body mass index (BMI), which is given
by weight/heightz. Another example is the dose of an anticonvulsant to be administered,
usually calculated on the basis of milligram of medicine per kilogram of body weight.
What are some assumptions when these types of variables are used? Give two additional
examples.

Every row of 12 observations in Table 3.3 can be summed to form the number of key-
punching errors per year of data. Calculate the 13 values for this variable. Make a
stem-and-leaf diagram. Calculate the (sample) mean and standard deviation. How do
this mean and standard deviation compare with the mean and standard deviation for the
number of keypunching errors per line of data?

The precise specification of the value of a variable is not always easy. Consider the
data dealing with keypunching errors in Table 3.3. How is an error defined? A fairly
frequent occurrence was the transposition of two digits—for example, a value of “63”
might have been entered as “36.” Does this represent one or two errors? Sometimes
a zero was omitted, changing, for example, 0.0317 to 0.317. Does this represent four
errors or one? Consider the list of qualitative variables at the beginning of Section 3.2,
and name some problems that you might encounter in defining the values of some of the
variables.

Give three examples of frequency distributions from areas of your own research interest.
Be sure to specify (1) what constitutes the sample, (2) the variable of interest, and (3)
the frequencies of values or ranges of values of the variables.

A constant is added to each observation in a set of data (relocation). Describe the
effect on the median, lower quartile, range, interquartile range, minimum, mean, vari-
ance, and standard deviation. What is the effect on these statistics if each observa-
tion is multiplied by a constant (rescaling)? Relocation and rescaling, called linear
transformations, are frequently used: for example, converting from °C to °F, defined
by °F = 1.8 x °C + 32. What is the rescaling constant? Give two more examples
of rescaling and relocation. An example of nonlinear transformation is going from
the radius of a circle to its area: A = mr2. Give two more examples of nonlinear
transformations.

Show that the geometric mean is always smaller than the arithmetic mean (unless all the
observations are identical). This implies that the mean of the logarithms is not the same
as the logarithm of the mean. Is the median of the logarithms equal to the logarithm of
the median? What about the interquartile range? How do these results generalize to other
nonlinear transformations?

The data in Table 3.14 deal with the treatment of essential hypertension (essential is a
technical term meaning that the cause is unknown; a synonym is idiopathic). Seventeen
patients received treatments C, A, and B, where C = control period, A = propranolol +
phenoxybenzamine, and B = propranolol 4+ phenoxybenzamine + hydrochlorothiazide.
Each patient received C first, then either A or B, and finally, B or A. The data consist of
the systolic blood pressure in the recumbent position. (Note that in this example blood
pressures are not always even-numbered.)



54

3.10

3.11

DESCRIPTIVE STATISTICS

Table 3.14 Treatment Data for Hypertension

C A B C A B

185 148 132 | 10 | 180 132 136
160 128 120 | 11 | 176 140 135
190 144 118 | 12 | 200 165 144
192 158 115 | 13 | 188 140 115
218 152 148 | 14 | 200 140 126
200 135 134 | 15 | 178 135 140
210 150 128 | 16 | 180 130 130
225 165 140 | 17 | 150 122 132
190 155 138

Source: Vlachakis and Mendlowitz [1976].

O 00N NN =

(a) Construct stem-and-leaf diagrams for each of the three treatments. Can you think
of some innovative way of displaying the three diagrams together to highlight the
data?

(b) Graph as a single graph the ECDFs for each of treatments C, A, and B.

(c) Construct box plots for each of treatments C, A, and B. State your conclusions with
respect to the systolic blood pressures associated with the three treatments.

(d) Consider the difference between treatments A and B for each patient. Construct a
box plot for the difference. Compare this result with that of part (b).

(e) Calculate the mean and standard deviation for each of the treatments C, A, and B.

(f) Consider, again, the difference between treatments A and B for each patient. Cal-
culate the mean and standard deviation for the difference. Relate the mean to the
means obtained in part (d). How many standard deviations is the mean away from
zero?

The New York air quality data used in Figure 3.7 are given in the Web appendix to this
chapter. Using these data, draw a simple plot of ozone vs. Solar radiation and compare it
to conditioning plots where the subsets are defined by temperature, by wind speed, and by
both variables together (i.e., one panel would be high temperature and high wind speed).
How does the visual impression depend on the number of panels and the conditioning
variables?

Table 3.15 is a frequency distribution of fasting serum insulin («U/mL) of males and
females in a rural population of Jamaican adults. (Serum insulin levels are expressed
as whole numbers, so that “7-” represents the values 7 and 8.) The last frequencies
are associated with levels greater than 45. Assume that these represent the levels 45
and 46.

(a) Plot both frequency distributions as histograms.

(b) Plot the relative frequency distributions.

(¢) Calculate the ECDF.

(d) Construct box plots for males and females. State your conclusions.

(e) Assume that all the observations are concentrated at the midpoints of the intervals.
Calculate the mean and standard deviation for males and females.

(f) The distribution is obviously skewed. Transform the levels for males to logarithms
and calculate the mean and standard deviation. The transformation can be carried
in at least two ways: (1) consider the observations to be centered at the midpoints,
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Table 3.15 Frequency Distribution of Fasting Serum Insulin

Fasting Fasting

Serum Serum

Insulin Insulin

(uU/mL) Males Females | (uU/mL) Males Females
7— 1 3 29— 8 14
9— 9 3 31— 8 11

11— 20 9 33— 4 10

13— 32 21 35— 4 8

15— 32 23 37— 3 7

17— 22 39 39— 1 2

19— 23 39 41— 1 3

21— 19 23 43— 1 1

23— 20 27 > 45 6 11

25— 13 23

27— 8 19 Total 235 296

Source: Data from Florey et al. [1977].

transform the midpoints to logarithms, and group into six to eight intervals; and (2)
set up six to eight intervals on the logarithmic scale, transform to the original scale,
and estimate by interpolation the number of observations in the interval. What type
of mean is the antilogarithm of the logarithmic mean? Compare it with the median
and arithmetic mean.

3.12 There has been a long-held belief that births occur more frequently in the “small hours of
the morning” than at any other time of day. Sutton [1945] collected the time of birth at
the King George V Memorial Hospital, Sydney, for 2654 consecutive births. (Note: The
total number of observations listed is 2650, not 2654 as stated by Sutton.) The frequency
of births by hour in a 24-hour day is listed in Table 3.16.

(a) Sutton states that the data “confirmed the belief ... that more births occur in the
small hours of the morning than at any other time in the 24 hours.” Develop a
graphical display that illustrates this point.

(b) Is there evidence of Sutton’s statement: “An interesting point emerging was the
relatively small number of births during the meal hours of the staff; this sug-
gested either hastening or holding back of the second stage during meal
hours™?

Table 3.16 Frequency of Birth by Hour of Birth

Time Births Time Births Time Births
6-7 pm 92 2am 151 10 am 101
7 pm 102 3am 110 11 am 107
8 pm 100 4am 144 12 pm 97
9 pm 101 5-6am 136 1 pm 93
10 pm 127 6-7 am 117 2 pm 100
11 pm 118 7 am 80 3 pm 93
12 am 97 8am 125 4pm 131
1 am 136 9 am 87 5-6 pm 105
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(c) The data points in fact represent frequencies of values of a variable that has been
divided into intervals. What is the variable?

At the International Health Exhibition in Britain, in 1884, Francis Galton, a scientist with
strong statistical interests, obtained data on the strength of pull. His data for 519 males
aged 23 to 26 are listed in Table 3.17. Assume that the smallest and largest categories
are spread uniformly over a 10-pound interval.

Table 3.17 Strength of Pull

Pull Strength Cases Pull Strength Cases
(Ib) Observed (Ib) Observed
Under 50 10 Under 90 113
Under 60 42 Under 100 22
Under 70 140 Above 100 24
Under 80 168
Total 519

(a) The description of the data is exactly as in Galton [1889]. What are the intervals,
assuming that strength of pull is measured to the nearest pound?

(b) Calculate the median and 25th and 75th percentiles.
(c) Graph the ECDF.

(d) Calculate the mean and standard deviation assuming that the observations are cen-
tered at the midpoints of the intervals.

(e) Calculate the proportion of observations within one standard deviation of the
mean.

The aflatoxin data cited at the beginning of Section 3.2 were taken from a larger set in
the paper by Quesenberry et al. [1976]. The authors state:

Aflatoxin is a toxic material that can be produced in peanuts by the fungus Aspergillus flavus.
As a precautionary measure all commercial lots of peanuts in the United States (approxi-
mately 20,000 each crop year) are tested for aflatoxin.... Because aflatoxin is often highly
concentrated in a small percentage of the kernels, variation among aflatoxin determinations
is large.... Estimation of the distribution (of levels) is important. ... About 6200g of raw
peanut kernels contaminated with aflatoxin were comminuted (ground up). The ground meal
was then divided into 11 subsamples (lots) weighing approximately 560g each. Each sub-
sample was blended with 2800ml methanol-water-hexane solution for two minutes, and the
homogenate divided equally among 16 centrifuge bottles. One observation was lost from each
of three subsamples leaving eight subsamples with 16 determinations and three subsamples
with 15 determinations.

The original data were given to two decimal places; they are shown in Table 3.18
rounded off to the nearest whole number. The data are listed by lot number, with asterisks
indicating lost observations.

(a) Make stem-and-leaf diagrams of the data of lots 1, 2, and 10. Make box plots
and histograms for these three lots, and discuss differences among these lots with
respect to location and spread.

(b) The data are analyzed by means of a MINITAB computer program. The data
are entered by columns and the command DESCRIBE is used to give standard
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Table 3.18 Aflatoxin Data by Lot Number

1 2 3 4 5 6 7 8 9 10 11

121 95 20 22 30 11 29 34 17 8 53
72 56 20 33 26 19 33 28 18 6 113
118 72 25 23 26 13 37 35 11 7 70
91 59 22 68 36 13 25 33 12 5 100
105 115 25 28 48 12 25 32 25 7 87
151 42 21 27 50 17 36 29 20 7 83
125 99 19 29 16 13 49 32 17 12 83
84 54 24 29 31 18 38 33 9 8 65
13390 24 52 22 18 29 31 15 9 74
83 92 20 29 27 17 29 32 21 14 112
117 67 12 22 23 16 32 29 17 13 98
91 92 24 29 35 14 40 26 19 11 85
101 100 15 37 52 11 36 37 23 5 82
75 77 15 41 28 15 31 28 17 7 95
137 92 23 24 37 16 32 31 15 4 60
146 66 22 36 * 12 * 32 17 12 *
Table 3.19 MINITAB Analysis of Aflatoxin Data®
MTB > desc cl—cll
N N* MEAN MEDIAN STDEV MIN MAX Q1 Q3
Cl 16 0 109.69 111.00 25.62 72 151 85.75 134.00
C2 16 0 79.25 83.50 20.51 42 115 60.75 94.25
C3 16 0 20.687 21.500 3.860 12 25 19.25 24.00
C4 16 0 33.06 29.00 12.17 22 68 24.75 36.75
Cs 15 1 32.47 30.00 10.63 16 52 26.00 37.00
C6 16 0 14.688 14.500 2.651 11 19 12.25 17.00
Cc7 15 1 33.40 32.00 6.23 25 49 29.00 37.00
C8 16 0 31.375 32.000 2.849 26 37 29.00 33.00
C9 16 0 17.06 17.00 4.19 9 25 15.00 19.75
C10 16 0 8.438 7.500 3.076 4 14 6.25 11.75
Cl1 15 1 84.00 83.00 17.74 53 113 70.00 98.00

“N*, number of missing observations; Q1 and Q3, 25th and 75th percentiles, respectively.

(c)
(d)

(e)

descriptive statistics for each lot. The output from the program (slightly modified)
is given in Table 3.19.

Verify that the statistics for lot 1 are correct in the printout.

There is an interesting pattern between the means and their standard deviations.
Make a plot of the means vs. standard deviation. Describe the pattern.

One way of describing the pattern between means and standard deviations is to
calculate the ratio of the standard deviation to the mean. This ratio is called the
coefficient of variation. It is usually multiplied by 100 and expressed as the percent
coefficient of variation. Calculate the coefficients of variation in percentages for
each of the 11 lots, and make a plot of their value with the associated means. Do
you see any pattern now? Verify that the average of the coefficients of variation is
about 24%. A reasonable number to keep in mind for many biological measurements
is that the variability as measured by the standard deviation is about 30% of the
mean.
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Table 3.20 Plasma Prostaglandin E Levels

Patient Mean Plasma Mean Serum
Number iPGE (pg/mL) Calcium (ml/dL)

Patients with Hypercalcemia

1 500 13.3
2 500 11.2
3 301 13.4
4 272 11.5
5 226 11.4
6 183 11.6
7 183 11.7
8 177 12.1
9 136 12.5
10 118 12.2
11 60 18.0
Patients without Hypercalcemia
12 254 10.1
13 172 9.4
14 168 9.3
15 150 8.6
16 148 10.5
17 144 10.3
18 130 10.5
19 121 10.2
20 100 9.7
21 88 9.2

A paper by Robertson et al. [1976] discusses the level of plasma prostaglandin E (iPGE)
in patients with cancer with and without hypercalcemia. The data are given in Table 3.20.
Note that the variables are the mean plasma iPGE and mean serum Ca levels—presumably,
more than one assay was carried out for each patient’s level. The number of such tests for
each patient is not indicated, nor is the criterion for the number.

(a) Calculate the mean and standard deviation of plasma iPGE level for patients with
hypercalcemia; do the same for patients without hypercalcemia.

(b) Make box plots for plasma iPGE levels for each group. Can you draw any conclu-
sions from these plots? Do they suggest that the two groups differ in plasma iPGE
levels?

(c) The article states that normal limits for serum calcium levels are 8.5 to 10.5 mg/dL.
It is clear that patients were classified as hypercalcemic if their serum calcium lev-
els exceeded 10.5 mg/dL. Without classifying patients it may be postulated that
high plasma iPGE levels tend to be associated with high serum calcium levels.
Make a plot of the plasma iPGE and serum calcium levels to determine if there is
a suggestion of a pattern relating these two variables.

Prove or verify the following for the observations y1, y2, ..., Yu.
@@ > 2y=23y.
d YXOo-»=0.

(¢) By means of an example, show that 3" y2 # (3 y)%.
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(d) Ifaisaconstant, . ay=ay.y.

(¢) Ifaisaconstant, (@ +y)=na+> y.
® > O/n)=A/n) Y y.

@ Y(a+y)?=na>+2aY y+Y y%.

) Y- =Xy - Cy/n

D Yo-»=Xy -y

3.17 A variable Y is grouped into intervals of width /4 and represented by the midpoint of
the interval. What is the maximum error possible in calculating the mean of all the
observations?

3.18 Prove that the two definitions of the geometric mean are equivalent.

3.19 Calculate the average number of boys per family of eight children for the data given in
Table 3.10.

3.20 The formula Y = > py is also valid for observations not arranged in a frequency dis-
tribution as follows: If we let 1/N = p, we get back to the formula ¥ = )_ py. Show
that this is so for the following four observations: 3, 9, 1, 7.

3.21 Calculate the average systolic blood pressure of native Japanese men using the frequency
data of Table 3.6. Verify that the same value is obtained using the relative frequency data
of Table 3.7.

3.22 Using the taxonomy of data described in Note 3.6, classify each of the variables in
Problem 3.1 according to the scheme described in the note.
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CHAPTER 4

Statistical Inference: Populations
and Samples

4.1 INTRODUCTION

Statistical inference has been defined as “the attempt to reach a conclusion concerning all
members of a class from observations of only some of them” [Runes, 1959]. In statistics, “all
members of a class” form the population or sample space, and the subset observed forms a
sample; we discussed this in Sections 3.1 and 3.2. We now discuss the process of obtaining
a valid sample from a population; specifically, when is it valid to make a statement about a
population on the basis of a sample? One of the assumptions in any scientific investigation is
that valid inferences can be made—that the results of a study can apply to a larger population.
For example, we can assume that a new therapy developed at the Memorial Sloan—Kettering
Cancer Center in New York is applicable to cancer patients in Great Britain. You can easily
supply additional examples.

In the next section we note which characteristics of a population are of interest and illustrate
this with two examples. In Section 4.3 we introduce probability theory as a way by which
we can define valid sampling procedures. In Section 4.4 we apply the theory to a well-known
statistical model for a population, the normal frequency distribution, which has practical as well
as theoretical interest. One reason for the importance of the normal distribution is given in
Section 4.5, which discusses the concept of sampling distribution. In the next three sections we
discuss inferences about population means and variances on the basis of a single sample.

4.2 POPULATION AND SAMPLE

4.2.1 Definition and Examples
You should review Chapter 3 for the concepts of variable, sample space or population, and
statistic.

Definition 4.1. A parameter is a numerical characteristic of a population.

Analogous to numerical characteristics of a sample (statistics), we will be interested in
numerical characteristics of populations (parameters). The population characteristics are usu-
ally unknown because the entire population cannot be enumerated or studied. The problem of
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statistical inference can then be stated as follows: On the basis of a sample from a popula-
tion, what can be said about the population from which the sample came? In this section we
illustrate the four concepts of population and its corresponding parameters, and sample and its
corresponding statistics.

Example 4.1. We illustrate those four concepts with an example from Chapter 3, systolic
blood pressure for Japanese men, aged 45-69, living in Japan. The “population” can be con-
sidered to be the collection of blood pressures of all Japanese men. The blood pressures are
assumed to have been taken under standardized conditions. Clearly, Winkelstein et al. [1975]
could not possibly measure all Japanese men, but a subset of 2232 eligible men were chosen.
This is the sample. A numerical quantity of interest could be the average systolic blood pres-
sure. This average for the population is a parameter; the average for the sample is the szatistic.
Since the total population cannot be measured, the parameter value is unknown. The statistic,
the average for the sample, can be calculated. You are probably assuming now that the sample
average is a good estimate of the population average. You may be correct. Later in this chapter
we specify under what conditions this is true, but note for now that all the elements of inference
are present.

Example 4.2. Consider this experimental situation. We want to assess the effectiveness of
a new special diet for children with phenylketonuria (PKU). One effect of this condition is that
untreated children become mentally retarded. The diet is used with a set of PKU children and
their IQs are measured when they reach 4 years of age. What is the population? It is hypothetical
in this case: all PKU children who could potentially be treated with the new diet. The variable
of interest is the IQ associated with each child. The sample is the set of children actually
treated. A parameter could be the median 1Q of the hypothetical population; a statistic might
be the median IQ of the children in the sample. The question to be answered is whether the
median IQ of this treated hypothetical population is the same or comparable to that of non-PKU
children.

A sampling situation has the following components: A population of measurement is speci-
fied, a sample is taken from the population, and measurements are made. A statistic is calculated
which—in some way—makes a statement about the corresponding population parameter. Some
practical questions that come up are:

1. Is the population defined unambiguously?
2. Is the variable clearly observable?

3. Is the sample “valid”?

4. Is the sample “big enough”?

The first two questions have been discussed in previous chapters. In this chapter we begin
to answer the last two.

Conventionally, parameters are indicated by Greek letters and the estimate of the parameter
by the corresponding Roman letter. For example, w is the population mean, and m is the sample
mean. Similarly, the population standard deviation will be indicated by o and the corresponding
sample estimate by s.

4.2.2 Estimation and Hypothesis Testing

Two approaches are commonly used in making statements about population parameters: esti-
mation and hypothesis testing. Estimation, as the name suggests, attempts to estimate values
of parameters. As discussed before, the sample mean is thought to estimate, in some way,
the mean of the population from which the sample was drawn. In Example 4.1 the mean of
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the blood pressures is considered an estimate of the corresponding population value. Hypoth-
esis testing makes inferences about (population) parameters by supposing that they have cer-
tain values, and then testing whether the data observed are consistent with the hypothesis.
Example 4.2 illustrates this framework: Is the mean 1Q of the population of PKU children
treated with the special diet the same as that of the population of non-PKU children? We could
hypothesize that it is and determine, in some way, whether the data are inconsistent with this
hypothesis.

You could argue that in the second example we are also dealing with estimation. If one could
estimate the mean IQ of the treated population, the hypothesis could be dealt with. This is quite
true. In Section 4.7 we will see that in many instances hypothesis testing and estimation are but
two sides of the same coin.

One additional comment about estimation: A distinction is usually made between point esti-
mate and interval estimate. A sample mean is a point estimate. An interval estimate is a range
of values that is reasonably certain to straddle the value of the parameter of interest.

4.3 VALID INFERENCE THROUGH PROBABILITY THEORY

4.3.1 Precise Specification of Our Ignorance

Everyone “knows” that the probability of heads coming up in the toss of a coin is 1/2 and
that the probability of a 3 in the toss of a die is 1/6. More subtly, the probability that a
randomly selected patient has systolic blood pressure less than the population median is 1/2,
although some may claim, after the measurement is made, that it is either O or 1—that is, the
systolic blood pressure of the patient is either below the median or greater than or equal to the
median.

What do we mean by the phrase “the probability of’? Consider one more situation. We toss a
thumbtack on a hard, smooth surface such as a table, if the outcome is L, we call it “up”; if the
outcome is T, we call it “down.” What is the probability of “up”? It is clear that in this example
we do not know, a priori, the probability of “up”—it depends on the physical characteristics of
the thumbtack. How would you estimate the probability of “up”? Intuitively, you would toss the
thumbtack a large number of times and observe the proportion of times the thumbtack landed
“up”—and that is the way we define probability. Mathematically, we define the probability
of “up” as the relative frequency of the occurrence of “up” as the number of tosses become
indefinitely large. This is an illustration of the relative frequency concept of probability. Some of
its ingredients are: (1) a trial or experiment has a set of specified outcomes; (2) the outcome of
one trial does not influence the outcome of another trial; (3) the trials are identical; and (4) the
probability of a specified outcome is the limit of its relative frequency of occurrence as the
number of trials becomes indefinitely large.

Probabilities provide a link between a population and samples. A probability can be thought
of as a numerical statement about what we know and do not know: a precise specification of
our ignorance [Fisher, 1956]. In the thumbtack-tossing experiment, we know that the relative
frequency of occurrences of “up” will approach some number: the probability of “up.” What we
do not know is what the outcome will be on the next toss. A probability, then, is a characteristic
of a population of outcomes. When we say that the probability of a head in a coin toss is
1/2, we are making a statement about a population of tosses. For alternative interpretations of
probability, see Note 4.1. On the basis of the relative frequency interpretation of probability, we
deduce that probabilities are numbers between zero and 1 (including zero and 1).

The outcome of a trial such as a coin toss will be denoted by a capital letter; for example,
H = “coin toss results in head” and 7" = “coin toss results in tail.” Frequently, the letter can
be chosen as a mnemonic for the outcome. The probability of an outcome, O, in a trial will
be denoted by P[O]. Thus, in the coin-tossing experiment, we have P[H] and P[T] for the
probabilities of “head” and “tail,” respectively.
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4.3.2 Working with Probabilities

Outcomes of trials can be categorized by two criteria: statistical independence and mutual
exclusiveness.

Definition 4.2. Two outcomes are statistically independent if the probability of their joint
occurrence is the product of the probabilities of occurrence of each outcome.

Using notation, let C be one outcome and D be another outcome; P[C] is the probability of
occurrence of C, and P[D] is the probability of occurrence of D. Then C and D are statistically
independent if

P[CD] = P[C]P[D]

where [C D] means that both C and D occur.

Statistically independent events are the model for events that “have nothing to do with each
other.” In other words, the occurrence of one event does not change the probability of the other
occurring. Later this is explained in more detail.

Models of independent outcomes are the outcomes of successive tosses of a coin, die, or
the spinning of a roulette wheel. For example, suppose that the outcomes of two tosses of a
coin are statistically independent. Then the probability of two heads, P[H H], by statistical
independence is

1 1
P[HH]= P[H]IP[H]=z x = = —
[HH] [H]P[H] 2 X3=1
Similarly,
1 1 1
P[HT] =z X - =~
2 2 4
1 1 1
P[TH]= - x == —
2 2 4
and
1 1 1
P[TT]=-x ==~
2 2 4

Note that the outcome HT means “head on toss 1 and tail on toss 2.”

You may wonder why we refer to coin tossing and dice throws so much. One reason has
been given already: These activities form patterns of probabilistic situations. Second, they can
be models for many experimental situations. Suppose that we consider the Winkelstein et al.
[1975] study dealing with blood pressures of Japanese men. What is the probability that each
of two men has a blood pressure less than the median of the population? We can use the coin-
toss model: By definition, half of the population has blood pressure less than the median. The
populations can then be thought of as a very large collection of trials each of which has two
outcomes: less than the median, and greater than or equal to the median. If the selection of two
men can be modeled by the coin-tossing experiment, the probability that both men have blood
pressures less than the median is 1/2 x 1/2 = 1/4. We now formalize this:

Definition 4.3. Outcomes of a series of repetitions of a trial are a random sample of out-
comes if the probability of their joint occurrence is the product of the probabilities of each
occurring separately. If every possible sample of k outcomes has the same probability of occur-
rence, the sample is called a simple random sample. This is the most common type of random
sample.
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Suppose that we are dealing with the outcomes of trials. We label the outcomes Oy, where
the subscript is used to denote the order in the sequence; O; is the outcome specified for the
first trial, Oy is the outcome for the second trial, and so on. Then the outcomes form a random
sample if

P[010203--- O] = P[O1]P[O2]P[O3] - - - P[Ok].

The phrase “a random sample” is therefore not so much a statement about the sample as a
statement about the method that produced the sample. The randomness of the sample allows us
to make valid statements about the population from which it came. It also allows us to quantify
what we know and do not know. (See Note 4.6 for another type of random sampling.)

How can we draw a random sample? For the coin tosses and dice throws, this is fairly
obvious. But how do we draw a random sample of Japanese men? Theoretically, we could have
their names on slips of paper in a very large barrel. The contents are stirred and slips of paper
drawn out—a random sample. Clearly, this is not done in practice. In fact, often, a sample is
claimed to be random by default: “There is no reason to believe that it is not random.” Thus,
college students taking part in a experiment are implicitly assumed to be a “random sample of
people.” Sometimes this is reasonable; as mentioned earlier, cancer patients treated in New York
are considered very similar with respect to cancer to cancer patients in California. There is a
gradation in the seriousness of nonrandomness of samples: “Red blood cells from healthy adult
volunteers” are apt to be similar in many respects the world over (and dissimilar in others);
“diets of teenagers,” on the other hand, will vary from region to region.

Obtaining a truly random sample is a difficult task that is rarely carried out successfully. A
standard criticism of any study is that the sample of data is not a random sample, so that the
inference is not valid. Some problems in sampling were discussed in Chapter 2; here we list a
few additional problems:

The population or sample space is not defined.
Part of the population of interest is not available for study.

1.

2.

3. The population is not identifiable or it changes with time.

4. The sampling procedure is faulty, due to limitations in time, money, and effort.
5.

Random allocation of members of a group to two or more treatments does not imply that
the group itself is necessarily a random sample.

Most of these problems are present in any study, sometimes in an unexpected way. For
example, in an experiment involving rats, the animals were “haphazardly” drawn from a cage for
assignment to one treatment, and the remaining rats were given another treatment. “Differences”
between the treatments were due to the fact that the more agile and larger animals evaded
“haphazard” selection and wound up in the second treatment. For some practical ways of drawing
random samples, see Note 4.9.

Now we consider probabilities of mutually exclusive events:

Definition 4.4. Two outcomes are mutually exclusive if at most one of them can occur at
a time; that is, the outcomes do not overlap.

Using notation, let C be one outcome and D another; then it can be shown (using the relative
frequency definition) that P[C or D] = P[C] + P[D] if the outcomes are mutually exclusive.
Here, the connective “or” is used in its inclusive sense, “either/or, or both.”

Some examples of mutually exclusive outcomes are H and 7 on a coin toss; the race of a
person for purposes of a study can be defined as “black,” “white,” or “other,” and each subject
can belong to only one category; the method of delivery can be either “vaginal” or by means
of a “cesarean section.”
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Example 4.3. We now illustrate outcomes that are not mutually exclusive. Suppose that
the Japanese men in the Winkelstein data are categorized by weight: “reasonable weight” or

“overweight,” and their blood pressures by “normal” or “high.” Suppose that we have the
following table:

Blood Pressure

Weight Normal (N) High (H)

Reasonable (R) 0.6 0.1 0.7
Overweight (O) 0.2 0.1 0.3
Total 0.8 0.2 1.0

The entries in the table are the probabilities of outcomes for a person selected randomly from
the population, so that, for example, 20% of Japanese men are considered overweight and have
normal blood pressure. Consider the outcomes “overweight” and “high blood pressure.” What

is the probability of the outcome [O or H] (overweight, high blood pressure, or both)? This
corresponds to the following data in boldface type:

N H

R 06 01 0.7
o 02 01 03

Total 0.8 0.2 1.0
P[O or H|=0240.14+0.1=04

But P[O]+ P[H]=0.2+0.3 =0.5. Hence, O and H are not mutually exclusive. In terms of
calculation, we see that we have added in the outcome P[O H] twice:

N H

R 0.1
0] 02 01 03

Total 0.2

The correct value is obtained if we subtract P[O H] as follows:

P[O or H] = P[O]+ P[H] — P[OH]
=03+02-0.1
=04

This example is an illustration of the addition rule of probabilities.

Definition 4.5. By the addition rule, for any two outcomes, the probability of occurrence

of either outcome or both is the sum of the probabilities of each occurring minus the probability
of their joint occurrence.
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Using notation, for any two outcomes C and D,
P[C or D] = P[C]+ [D] — P[CD]

Two outcomes, C and D, are mutually exclusive if they cannot occur together. In this case,
P[CD] =0 and P[C or D] = P[C]+ P[D], as stated previously.

We conclude this section by briefly discussing dependent outcomes. The outcomes O and H
in Example 4.3 were not mutually exclusive. Were they independent? By Definition 4.2, O and
H are statistically independent if P[OH] = P[O]P[H].

From the table, we get P[OH] = 0.1, P[O] = 0.3, and P[H] = 0.2, so that

0.1 # (0.3)(0.2)

Of subjects with reasonable weight, only 1 in 7 has high blood pressure, but among overweight
persons, 1 in 3 has high blood pressure. Thus, the probability of high blood pressure in over-
weight subjects is greater than the probability of high blood pressure in subjects of normal
weight. The reverse statement can also be made: 2 of 8 persons with normal blood pressure are
overweight; 1 of 2 persons with high blood pressure is overweight.

The statement “of subjects with reasonable weight, only 1 in 7 has high blood pressure” can
be stated as a probability: “The probability that a person with reasonable weight has high blood
pressure is 1/7.” Formally, this is written as

1
PIH|R] = 5

or Plhigh blood pressure given a reasonable weight] = 1/7. The probability P[H|R] is called
a conditional probability. You can verify that P[H|R] = P[HR]/P[R].

Definition 4.6. For any two outcomes C and D, the conditional probability of the occur-
rence of C given the occurrence of D, P[C|D], is given by
P[CD]
P[D]

PIC|D] =

For completeness we now state the multiplication rule of probability (which is discussed in
more detail in Chapter 6).

Definition 4.7. By the multiplication rule, for any two outcomes C and D, the probability
of the joint occurrence of C and D, P[CD], is given by

P[CD] = P[C]P[D|C]

or equivalently,
P[CD] = P[D]P|[C|D]

Example 4.3. [continued] What is the probability that a randomly selected person is over-
weight and has high blood pressure? In our notation we want P[O H]. By the multiplication
rule, this probability is

P[OH] = P[O]P[H|O]

Using Definition 4.6 gives us

P[OH] 0.

P[H|0] = _ !
[H]01 = P[O] 03 3
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so that |
P[OH] =103 (§> =0.1

Alternatively, we could have calculated P[O H] by
P[OH] = P[H]P[O|H]

which becomes

(0.1)
P[OH]=02{—)=0.1
0.2

We can also state the criterion for statistical independence in terms of conditional proba-
bilities. From Definition 4.2, two outcomes C and D are statistically independent if P[CD] =
P[C]P[D] (i.e., the probability of the joint occurrence of C and D is the product of the proba-
bility of C and the probability of D). The multiplication rule states that for any two outcomes
C and D,

P[CD] = P[C]P[D|C]

Under independence,
P[CD] = P[C]P[D]

Combining the two, we see that C and D are independent if (and only if) P[D|C] = P[D]. In
other words, the probability of occurrence of D is not altered by the occurrence of C. This has
intuitive appeal.

When do we use the addition rule; when the multiplication rule? Use the addition rule to
calculate the probability that either one or both events occur. Use the multiplication rule to
calculate the probability of the joint occurrence of two events.

4.3.3 Random Variables and Distributions

Basic to the field of statistics is the concept of a random variable:
Definition 4.8. A random variable is a variable associated with a random sample.

The only difference between a variable defined in Chapter 3 and a random variable is the
process that generates the value of the variable. If this process is random, we speak of a random
variable. All the examples of variables in Chapter 3 can be interpreted in terms of random
variables if the samples are random samples. The empirical relative frequency of occurrence of
a value of the variable becomes an estimate of the probability of occurrence of that value. For
example, the relative frequencies of the values of the variable “number of boys in families with
eight children” in Table 3.12 become estimates of the probabilities of occurrence of these values.

The distinction between discrete and continuous variables carries over to random vari-
ables. Also, as with variables, we denote the label of a random variable by capital letters
(say X,Y,V,...) and a value of the random variable by the corresponding lowercase letter
(x,y,v,...).

We are interested in describing the probabilities with which values of a random variable
occur. For discrete random variables, this is straightforward. For example, let Y be the outcome
of the toss of a die. Then Y can take on the values 1, 2, 3, 4, 5, 6, and we write

1 1 1
PIY=11=¢. PIY=2l=c.... PI¥=6l=¢



VALID INFERENCE THROUGH PROBABILITY THEORY 69

This leads to the following definition:

Definition 4.9. A probability function is a function that for each possible value of a discrete
random variable takes on the probability of that value occurring. The function is usually presented
as a listing of the values with the probabilities of occurrence of the values.

Consider again the data of Table 3.12, the number of boys in families with eight children.
The observed empirical relative frequencies can be considered estimates of probabilities if the
53,680 families are a random sample. The probability distribution is then estimated as shown
in Table 4.1. The estimated probability of observing precisely two boys in a family of eight
children is 0.0993 or, approximately, 1 in 10. Since the sample is very large, we will treat—
in this discussion—the estimated probabilities as if they were the actual probabilities. If YV
represents the number of boys in a family with eight children, we write

P[Y = 2] =0.0993
What is the probability of two boys or fewer? This can be expressed as
PlY <2]=P[Y=2orY=1orY =0]
Since these are mutually exclusive outcomes,

PlY <2] = P[Y =2]+ P[Y =11+ P[Y =0]
= 0.0993 4+ 0.0277 + 0.0040
= 0.1310

Approximately 13% of families with eight children will have two or fewer boys. A probability
function can be represented graphically by a plot of the values of the variable against the
probability of the value. The probability function for the Geissler data is presented in Figure 4.1.

How can we describe probabilities associated with continuous random variables? Somewhat
paradoxically, the probability of a specified value for a continuous random variable is zero!
For example, the probability of finding anyone with height 63.141592654 inches—and not
63.141592653 inches—is virtually zero. If we were to continue the decimal expansion, the
probability becomes smaller yet. But we do find people with height, say, 63 inches. When we
write 63 inches, however, we do not mean 63.000... inches (and we are almost certain not to
find anybody with that height), but we have in mind an interval of values of height, anyone
with height between 62.500... and 63.500... inches. We could then divide the values of the
continuous random variable into intervals, treat the midpoints of the intervals as the values of a
discrete variable, and list the probabilities associated with these values. Table 3.7 illustrates this
approach with the division of the systolic blood pressure of Japanese men into discrete intervals.

We start with the histogram and the relative frequencies associated with the intervals of
values in the histogram. The area under the “curve” is equal to 1 if the width of each interval

Table 4.1 Number of Boys in Eight-Child Families

Number of Boys  Probability | Number of Boys  Probability
0 0.0040 6 0.1244

1 0.0277 7 0.0390

2 0.0993 8 0.0064

3 0.1984

4 0.2787

5 0.2222 Total 1.0000
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Figure 4.1 Probability function of the random variable “number of boys in families with eight children.”
(Geissler’s date; reprinted in Fisher [1958]; see Table 3.10.)

is 1; or if we normalize (i.e., multiply by a constant so that the area is equal to 1). Suppose
now that the interval widths are made smaller and smaller, and simultaneously, the number of
cases increased. Normalize so that the area under the curve remains equal to 1; then the curve

is assumed to take on a smooth shape. Such shapes are called probability density functions or,
more briefly, densities:

Definition 4.10. A probability density function is a curve that specifies, by means of the
area under the curve over an interval, the probability that a continuous random variable falls
within the interval. The total area under the curve is 1.

Some simple densities are illustrated in Figure 4.2. Figure 4.2(a) and (b) represent uniform
densities on the intervals (—1, 1) and (0, 1), respectively. Figure 4.2(c) illustrates a triangular
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Figure 4.2 Examples of probability density functions. In each case, the area under the curve is equal to 1.
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density, and Figure 4.2(d) an exponential density. The latter curve is defined over the entire
positive axis. (It requires calculus to show that the area under this curve is 1.) The probability
that a continuous random variable takes on a value in a specified interval is equal to the area
over the interval. For example, the probability that the random variable in Figure 4.2(a) falls
in the interval 0.2-0.6 is equal to the area over the interval. This is, (0.6 — 0.2)(0.5) = 0.20,
so that we expect 20% of values of this random variable to fall in this interval. One of the
most important probability density function is the normal distribution; it is discussed in detail
in Section 4.4.

How can we talk about a random sample of observations of a continuous variable? The
simplest way is to consider the drawing of an observation as a trial and the probability of
observing an arbitrary (but specified) value or smaller of the random variable. Definition 4.3
can then be applied.

Before turning to the normal distribution, we introduce the concept of averages of random
variables. In Section 3.4.2, we discussed the average of a discrete variable based on the empirical
relative frequency distribution. The average of a discrete variable Y with values yi, y2, ..., y
occurring with relative frequencies pi, p2, ..., pk, respectively, was shown to be

Y=Y py

(We omit the subscripts since it is clear that we are summing over all the values.) Now, if
Y is a random variable and pi, p2, ..., px are the probabilities of occurrence of the values
Y1, Y2, ..., Yk, We give the quantity Y py a special name:

Definition 4.11. The expected value of a discrete random variable Y, denoted by E(Y), is

EY)=)_py

where py, ..., px are the probabilities of occurrence of the k possible values yi, ..., yx of Y.
The quantity E( Y) is usually denoted by pu.

To calculate the expected value for the data of Table 3.12, the number of boys in families
with eight children, we proceed as follows. Let py, pa, ... , pi represent the probabilities P[Y =
0], P[Y =1],..., P[Y = 8]. Then the expected value is

EY)=pox0+p x1+4+---+pgx8
= (0.0040)(0) + (0.0277)(1) + (0.0993)(2) + - - - 4+ (0.0064)(8)
=4.1179
= 4.12 boys
This leads to the statement: “A family with eight children will have an average of 4.12 boys.”

Corresponding to the sample variance, s2, is the variance associated with a discrete random
variable:

Definition 4.12. The variance of a discrete random variable Y is
EY -w*=) ply—n’

where pi, ..., pix are the probabilities of occurrence of the k possible values yq, ..., yx of Y.
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The quantity E(Y — 11)? is usually denoted by o2, where o is the Greek lowercase letter
sigma. For the example above, we calculate

o2 = (0.0040)(0 — 4.1179)% + (0.0277)(1 — 4.1179)> + - - - + (0.0064) (1 — 4.1179)?
= 2.0666

Several comments about E(Y — u)z can be made:

1. Computationally, it is equivalent to calculating the sample variance using a divisor of n
rather than n — 1, and probabilities rather than relative frequencies.

2. The square root of o2(0) is called the (population) standard deviation of the random
variable.

3. It can be shown that 3 p(y — u)> = Y py* — u?. The quantity 3 py? is called the
second moment about the origin and can be defined as the average value of the squares of
Y or the expected value of Y2, This can then be written as E(Y?), so that E(Y — u)? =
E(Y? — E2(Y) = E(Y?) — pu2. See Note 4.9 for further development of the algebra of
expectations.

What about the mean and variance of a continuous random variable? As before, we could
divide the range of the continuous random variable into a number of intervals, calculate the
associated probabilities of the variable, assume that the values are concentrated at the midpoints
of the intervals, and proceed with Definitions 4.8 and 4.9. This is precisely what is done with
one additional step: The intervals are made narrower and narrower. The mean is then the limit
of a sequence of means calculated in this way, and similarly the variance. In these few sentences
we have crudely summarized the mathematical process known as integration. We will only state
the results of such processes but will not actually derive or demonstrate them. For the densities
presented in Figure 4.2, the following results can be stated:

Figure Name n a2

4.2(a) Uniformon (—1,1) 0 1/3
4.2(b)  Uniform on (0, 1) 172 1/12
4.2(c) Triangular on (1, 3) 2 1/6
4.2(d) Exponential 1 1

The first three densities in Figure 4.2 are examples of symmetric densities. A symmetric
density always has equality of mean and median. The exponential density is not symmetric; it is
“skewed to the right.” Such a density has a mean that is larger than the median; for Figure 4.2(d),
the median is about 0.69.

It is useful at times to state the functional form for the density. If Y is the random variable,
then for a value Y = y, the height of the density is given by f(y). The densities in Figure 4.2
have the functional forms shown in Table 4.2. The letter ¢ in f(y) = e~ is the base of the
natural logarithms. The symbol co stands for positive infinity.

44 NORMAL DISTRIBUTIONS

Statistically, a population is the set of all possible values of a variable; random selection of
objects of the population makes the variable a random variable and the population is described
completely (modeled) if the probability function or the probability density function is specified.
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Table 4.2 Densities in Figure 4.2

Figure Name of Density Function Range of Y
4.2(a)  Uniform on (—1,1) f(y)=0.5 -1,1)
f») =0 elsewhere
4.2(b)  Uniform on (0, 1) foy) =1 ©, 1)
f) =0 elsewhere
4.2(c)  Triangular on (1,3) fo)=y—-1 (1, 2)
fm=3-y @3
fy)=0 elsewhere
4.2(d)  Exponential fy)=e (0, o0)
fy)=0 elsewhere

A statistical challenge is to find models of populations that use a few parameters (say, two or
three), yet have wide applicability to real data. The normal or Gaussian distribution is one such
statistical model.

The term Gaussian refers to Carl Friedrich Gauss, who developed and applied this model.
The term normal appears to have been coined by Francis Galton. It is important to remember
that there is nothing normal or abnormal about the normal distribution! A given data set may
or may not be modeled adequately by the normal distribution. However, the normal distribution
often proves to be a satisfactory model for data sets. The first and most important reason is
that it “works,” as will be indicated below. Second, there is a mathematical reason suggesting
that a Gaussian distribution may adequately represent many data sets—the famous central limit
theorem discussed in Section 4.5. Finally, there is a matter of practicality. The statistical theory
and methods associated with the normal distribution work in a nice fashion and have many
desirable mathematical properties. But no matter how convenient the theory, the assumptions
that a data set is modeled adequately by a normal curve should be verified when looking at a
particular data set. One such method is presented in Section 4.4.3.

4.4.1 Examples of Data That Might Be Modeled by a Normal Distribution

The first example is taken from a paper by Golubjatnikov et al. [1972]. Figure 4.3 shows serum
cholesterol levels of Mexican and Wisconsin children in two different age groups. In each case
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Figure 4.3 Distribution of serum cholesterol levels in Mexican and Wisconsin school children. (Data from
Golubjatnikov et al. [1972].)
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Figure 4.4 Frequency distribution of dietary saturated fat and dietary complex carbohydrate intake. (Data
from Kato et al. [1973].)

there is considerable fluctuation in the graphs, probably due to the small numbers of people
considered. However, it might be possible to model such data with a normal curve. Note that
there seem to be possibly too many values in the right tail to model the data by a normal curve
since normal curves are symmetric about their center point.

Figure 4.4 deals with epidemiologic studies of coronary heart disease and stroke in Japanese
men living in Japan, Hawaii, and California. The curves present the frequency distribution of
the percentage of calories from saturated fat and from complex carbohydrate in the three groups
of men. Such percentages necessarily lie on the interval from O to 100. For the Hawaiian and
Californian men with regard to saturated fat, the bell-shaped curve might be a reasonable model.
Note, however, that for Japanese men, with a very low percentage of the diet from saturated
fat, a bell-shaped curve would obviously be inappropriate.

A third example from Kesteloot and van Houte [1973] examines blood pressure measurements
on 42,000 members of the Belgian army and territorial police. Figure 4.5 gives two different age
groups. Again, particularly in the graphs of the diastolic pressures, it appears that a bell-shaped
curve might not be a bad model.

Another example of data that do not appear to be modeled very well by a symmetric bell-
shaped curve is from a paper by Hagerup et al. [1972] dealing with serum cholesterol, serum
triglyceride, and ABO blood groups in a population of 50-year-old Danish men and women.
Figure 4.6 shows the distribution of serum triglycerides. There is a notable asymmetry to the
distribution, there being too many values to the right of the peak of the distribution as opposed
to the left.

A final example of data that are not normally distributed are the 2-hour plasma glucose
levels (mg per 100 mL) in Pima Indians. The data in Figure 4.7 are the plasma glucose levels
for male Pima Indians for each decade of age. The data become clearly bimodal (two modes)
with increasing decade of age. Note also that the overall curve is shifting to the right with
increasing decade: The first mode shifts from approximately 100 mg per 100 mL in the 5- to
14-year decade to about 170 mg per 100 mL in the 65- to 74-year decade.

4.4.2 Calculating Areas under the Normal Curve

A normal distribution is specified completely by its mean, u, and standard deviation, o . Figure 4.8
illustrates some normal distributions with specific means and standard deviations. Note that two
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Figure 4.5 Distributions of systolic and diastolic blood pressures according to age. (Data from Kesteloot
and van Houte [1973].)

normal distributions with the same standard deviation but different means have the same shape
and are merely shifted; similarly, two normal distributions with the same means but different
standard deviations are centered in the same place but have different shapes. Consequently, ©
is called a location parameter and o a shape parameter.

The standard deviation is the distance from the mean to the point of inflection of the curve.
This is the point where a tangent to the curve switches from being over the curve to under
the curve.

As with any density, the probability that a normally distributed random variable takes on a
value in a specified interval is equal to the area over the interval. So we need to be able to
calculate these areas in order to know the desired probabilities. Unfortunately, there is no simple
algebraic formula that gives these areas, so tables must be used (see Note 4.15). Fortunately, we
need only one table. For any normal distribution, we can calculate areas under its curve using
a table for a normal distribution with mean © = 0 and standard deviation o = 1 by expressing
the variable in the number of standard deviations from the mean. Using algebraic notation, we
get the following:

Definition 4.13. For a random variable Y with mean u and standard deviation o, the
associated standard score, Z, 1S




76 STATISTICAL INFERENCE: POPULATIONS AND SAMPLES

2001 ] 413dM: 1222076 m mol/l

2401 M

2001 3520 M:0952047 mmol/l
160+
1204
50

40+

=1 P o S gy HENY —
10 20 30

Figure 4.6 Serum triglycerides: 50-year survey in Glostrup. Fasting blood samples were drawn for deter-
mination of serum triglyceride by the method of Laurell. (Data from Hagerup et al. [1972].)

Given values for u and o, we can go from the “Y scale” to the “Z scale,” and vice versa.
Algebraically, we can solve for Y and get Y = u 4 o Z. This is also the procedure that is used
to get from degrees Celsius (°C) to degrees Fahrenheit (°F). The relationship is

. F—32
C=—=
1.8

Similarly,
°F=32+18x°C

Definition 4.14. A standard normal distribution is a normal distribution with mean yu = 0
and standard deviation o = 1.

Table A.1 in the Appendix gives standard normal probabilities. The table lists the area to the
left of the stated value of the standard normal deviate under the columns headed “cum. dist.”
For example, the area to the left of Z = 0.10 is 0.5398, as shown in Figure 4.9.

In words, 53.98% of normally distributed observations have values less than 0.10 standard
deviation above the mean. We use the notation P[Z < 0.10] = 0.5398, or in general, P[Z < z].
To indicate a value of Z associated with a specified area, p, to its left, we will use a subscript
on the value Z,. For example, P[Z < z.1] = 0.10; that is, we want that value of Z such that
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Figure 4.7 Distribution of 2-hour plasma glucose levels (mg/100 mL) in male Pima Indians by decade.
(Data from Rushforth et al. [1971].)

0.1 of the area is to its left (call it zp 1), or equivalently, such that a proportion 0.1 of Z values
are less than or equal to zo.;. By symmetry, we note that z;_, = —z,,.

Since the total area under the curve is 1, we can get areas in the right-hand tail by subtraction.
Formally,

P[Z>z]=1—-P[Z <z]

In terms of the example above, P[Z > 0.10] = 1 — 0.5398 = 0.4602. By symmetry, areas to
the left of Z = 0 can also be obtained. For example, P[Z < —0.10] = P[Z > 0.10] = 0.4602.
These values are indicated in Figure 4.10.

We now illustrate use of the standard normal table with two word problems. When calculating

areas under the normal curve, you will find it helpful to draw a rough normal curve and shade
in the required area.

Example 4.4. Suppose that IQ is normally distributed with mean pu = 100 and standard
deviation o = 15. A person with IQ > 115 has a high IQ. What proportion of the population has
high 1Qs? The area required is shown in Figure 4.11. It is clear that IQ = 115 is one standard
deviation above the mean, so the statement P[/Q > 115] is equivalent to P[Z > 1]. This can
be obtained from Table A.1 using the relationship P[Z > 1] =1—-P[Z <1]=1-0.8413 =
0.1587. Thus, 15.87% of the population has a high IQ. By the same token, if an IQ below 85
is labeled low IQ, 15.87% of the population has a low IQ.

Example 4.5. Consider the serum cholesterol levels of Wisconsin children as pictured in
Figure 4.3. Suppose that the population mean is 175 mg per 100 mL and the population standard
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Figure 4.8 Examples of normal distributions.

0.5398

/477

0.1 p
Figure 4.9 Area to the left of Z = 0.10 is 0.5398.

deviation is 30 mg per 100 mL. Suppose that a “normal cholesterol value” is taken to be a value
within two standard deviations of the mean. What are the normal limits, and what proportion of
Wisconsin children will be within normal limits?

We want the area within +2 standard deviations of the mean (Figure 4.12). This can be
expressed as P[—2 < Z < +2]. By symmetry and the property that the area under the normal
curve is 1.0, we can express this as

P[-2<Z<2]=1-2P[Z > 2]

(You should sketch this situation, to convince yourself.) From Table A.1, P[Z < 2] = 0.9772,
so that P[Z > 2] = 1 — 0.9772 = 0.0228. (Note that this value is computed for you in the
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Figure 4.10 P[Z < —0.10] = P[Z > 0.10] = 0.4602.
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Figure 4.11 Proportion of the population with high IQs.
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Figure 4.12 Area with £2 standard deviations of the mean.

column labeled “one-sided.”) The desired probability is

P[-2 < Z <2] = 1 —2(0.0228)
= 0.9544

In words, 95.44% of the population of Wisconsin schoolchildren have cholesterol values within
normal limits.
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Figure 4.13 Ninety-five percent of normally distributed observations are within £1.96 standard deviations
of the mean.

Suppose that we change the question: Instead of defining normal limits and calculating the
proportion within these limits, we define the limits such that, say, 95% of the population has
cholesterol values within the stated limits. Before, we went from cholesterol level to Z-value
to area; now we want to go from area to Z-value to cholesterol values. In this case, Table A.2
will be useful. Again, we begin with an illustration, Figure 4.13. From Table A.2 we get P[Z >
1.96] = 0.025, so that P[—1.96 < Z < 1.96] = 0.95; in words, 95% of normally distributed
observations are within +1.96 standard deviations of the mean. Or, translated to cholesterol
values by the formula, Y = 175 4+ 30Z. For Z = 1.96,Y = 175 + (30)(1.96) = 233.8 = 234,
and for Z = —1.96,Y = 175 4+ (30)(—1.96) = 116.2 = 116. On the basis of the model, 95%
of cholesterol values of Wisconsin children are between 116 and 234 mg per 100 mL. If the
mean and standard deviation of cholesterol values of Wisconsin children are 175 and 30 mg per
100 mL, respectively, the 95% limits (116, 234) are called 95% rolerance limits.

Often, it is useful to know the range of normal values of a substance (variable) in a normal
population. A laboratory test can then be carried out to determine whether a subject’s values
are high, low, or within normal limits.

Example 4.6. An article by Zervas et al. [1970] provides a list of normal values for more
than 150 substances ranging from ammonia to vitamin Bi;. These values have been reprinted
in The Merck Manual of Diagnosis and Therapy [Berkow, 1999]. The term normal values does
not imply that variables are normally distributed (i.e., follow a Gaussian or bell-shaped curve).
A paper by Elveback et al. [1970] already indicated that of seven common substances (calcium,
phosphate, total protein, albumin, urea, magnesium, and alkaline phosphatase), only albumin
values can be summarized adequately by a normal distribution. All the other substances had
distributions of values that were skewed. The authors (correctly) conclude that “the distributions
of values in healthy persons cannot be assumed to be normal.” Admittedly, this leaves an
unsatisfactory situation: What, then, do we mean by normal limits? What proportion of normal
values will fall outside the normal limits as the result of random variation? None of these—and
other—critical questions can now be answered, because a statistical model is not available. But
that appears to be the best we can do at this point; as the authors point out, “good limits are
hard to get, and bad limits hard to change.”

4.4.3 Quantile-Quantile Plots

How can we know whether the normal distribution model fits a particular set of data? There
are many tests for normality, some graphical, some numerical. In this section we discuss a
simple graphical test, the quantile—quantile (QQ) plot. In this approach we plot the quantiles
of the data distribution observed against the expected quantiles for the normal distribution. The
resulting graph is a version of the cumulative frequency distribution but with distorted axes
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chosen so that a normal distribution would give a straight line. In precomputer days, quantile—
quantile plots for the normal distribution were obtained by drawing the empirical cumulative
frequency distribution on special normal probability paper, but it is now possible to obtain
quantile—quantile plots for many different distributions from the computer.

A famous book by Galton [1889] contains data on the stature of parents and their adult
children. Table 4.3 gives the frequency distributions of heights of 928 adult children. The

Table 4.3 Frequency Distribution of Stature of 928

100
|

Adult Children

Cumulative ~ Cumulative
Endpoint (in.)  Frequency  Frequency Percentage
61.7¢ 5 5 0.5
62.2 7 12 1.3
63.2 32 44 4.7
64.2 59 103 11.1
65.2 48 151 16.3
66.2 117 268 28.9
67.2 138 406 43.8
68.2 120 526 56.7
69.2 167 693 74.7
70.2 99 792 85.3
71.2 64 856 92.2
72.2 41 897 96.7
73.2 17 914 98.5
73.7¢ 14 928 100

Source: Galton [1889].
@ Assumed endpoint.
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Figure 4.14 Empirical cumulative frequency polygon of heights of 928 adult children. (Data from Galton

[1889].)
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Figure 4.15 Quantile—quantile plot of heights of 928 adult children. (Data from Galton [1889].)

cumulative percentages plotted against the endpoints of the intervals in Figure 4.14 produce
the usual sigmoid-shaped curve.

These data are now plotted on normal probability paper in Figure 4.15. The vertical scale
has been stretched near 0% and 100% in such a way that data from a normal distribution should
fall on a straight line. Clearly, the data are consistent with a normal distribution model.

4.5 SAMPLING DISTRIBUTIONS

4.5.1 Statistics Are Random Variables

Consider a large multicenter collaborative study of the effectiveness of a new cancer therapy. A
great deal of care is taken to standardize the treatment from center to center, but it is obvious
that the average survival time on the new therapy (or increased survival time if compared to a
standard treatment) will vary from center to center. This is an illustration of a basic statistical
fact: Sample statistics vary from sample to sample. The key idea is that a statistic associated
with a random sample is a random variable. What we want to do in this section is to relate the
variability of a statistic based on a random sample to the variability of the random variable on
which the sample is based.

Definition 4.15. The probability (density) function of a statistic is called the sampling
distribution of the statistic.

What are some of the characteristics of the sampling distribution? In this section we state
some results about the sample mean. In Section 4.8 some properties of the sampling distribution
of the sample variance are discussed.

4.5.2 Properties of Sampling Distribution

Result 4.1. If a random variable ¥ has population mean p and population variance o2, the
sampling distribution of sample means (of samples of size n) has population mean p and
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population variance o2/n. Note that this result does not assume normality of the “parent”
population.

Definition 4.16. The standard deviation of the sampling distribution is called the standard
error.

Example 4.7. Suppose that IQ is a random variable with mean p© = 100 and standard devi-
ation o = 15. Now consider the average IQ of classes of 25 students. What are the population
mean and variance of these class averages? By Result 4.1, the class averages have popula-
tion mean & = 100 and population variance o%/n = 15%/25 = 9. Or, the standard error is
Vo2/n=./152/25 =9 = 3.

To summarize:

Population
Mean Variance +/ Variance
Single observation, Y 100 152=225 15=o0
Mean of 25 observations, Y 100 15%2/25 =9 3=o0/Jn

The standard error of the sampling distribution of the sample mean Y is indicated by oy
to distinguish it from the standard deviation, o, associated with the random variable Y. It is
instructive to contemplate the formula for the standard error, o//n. This formula makes clear
that a reduction in variability by, say, a factor of 2 requires a fourfold increase in sample size.
Consider Example 4.7. How large must a class be to reduce the standard error from 3 to 1.5?
We want o/+4/n = 1.5. Given that o = 15 and solving for n, we get n = 100. This is a fourfold
increase in class size, from 25 to 100. In general, if we want to reduce the standard error by a
factor of k, we must increase the sample size by a factor of k2. This suggests that if a study
consists of, say, 100 observations and with a great deal of additional effort (out of proportion to
the effort of getting the 100 observations) another 10 observations can be obtained, the additional
10 may not be worth the effort.

The standard error based on 100 observations is o /+/100. The ratio of these standard errors is

o/¥/100 _ V100 _ o

o/v110 /110

Hence a 10% increase in sample size produces only a 5% increase in precision. Of course,
precision is not the only criterion we are interested in; if the 110 observations are randomly
selected persons to be interviewed, it may be that the last 10 are very hard to locate or difficult
to persuade to take part in the study, and not including them may introduce a serious bias. But
with respect to precision there is not much difference between means based on 100 observations
and means based on 110 observations (see Note 4.11).

4.5.3 Central Limit Theorem

Although Result 4.1 gives some characteristics of the sampling distribution, it does not permit
us to calculate probabilities, because we do not know the form of the sampling distribution. To
be able to do this, we need the following:

Result 4.2. If Y is normally distributed with mean p and variance o2, then Y, based on a
random sample of n observations, is normally distributed with mean p and variance o?/n.
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Figure 4.16 Three sampling distributions for means of random samples of size 1, 2, and 4 from a N (0, 1)
population.

Result 4.2 basically states that if Y is normally distributed, then Y, the mean of a random
sample, is normally distributed. Result 4.1 then specifies the mean and variance of the sampling
distribution. Result 4.2 implies that as the sample size increases, the (normal) distribution of the
sample mean becomes more and more “pinched.” Figure 4.16 shows three sampling distributions
for means of random samples of size 1, 2, and 4.

What is the probability that the average IQ of a class of 25 students exceeds 1067 By
Result 4.2, Y, the average of 25 IQs, is normally distributed with mean p = 100 and standard
error 0 /y/n =15/ V25 = 3. Hence the probability that ¥ > 106 can be calculated as

— 106 — 100
P[Y > 106] = P |:Z > 7]

3
= P[Z = 2]
=1-0.9772

= 0.0228

So approximately 2% of average 1Qs of classes of 25 students will exceed 106. This can be
compared with the probability that a single person’s IQ exceeds 106:

6
P[Y > 106] = P |:Z > Ei| = P[Z > 0.4] = 0.3446

The final result we want to state is known as the central limit theorem.

Result 4.3. If a random variable ¥ has population mean p and population variance o2, the
sample mean Y, based on n observations, is approximately normally distributed with mean p
and variance o2/n, for sufficiently large 7.

This is a remarkable result and the most important reason for the central role of the normal
distribution in statistics. What this states basically is that means of random samples from any
distribution (with mean and variance) will tend to be normally distributed as the sample size
becomes sufficiently large. How large is “large”? Consider the distributions of Figure 4.2. Sam-
ples of six or more from the first three distributions will have means that are virtually normally



INFERENCE ABOUT THE MEAN OF A POPULATION 85

n
0
--- n=5
2 o — n=20
2 <+
[
a
0 _|
o
o| _.o SN~ TTmeee
e T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Sample Mean

Figure 4.17 Sampling distributions of means of 5 and 20 observations when the parent distribution is
exponential.

distributed. The fourth distribution will take somewhat larger samples before approximate nor-
mality is obtained; n must be around 25 or 30. Figure 4.17 is a more skewed figure that shows
the sampling distributions of means of samples of various sizes drawn from Figure 4.2(d).

The central limit theorem provides some reassurance when we are not certain whether obser-
vations are normally distributed. The means of reasonably sized samples will have a distribution
that is approximately normal. So inference procedures based on the sample means can often
use the normal distribution. But you must be careful not to impute normality to the original
observations.

4.6 INFERENCE ABOUT THE MEAN OF A POPULATION

4.6.1 Point and Interval Estimates

In this section we discuss inference about the mean of a population when the population variance
is known. The assumption may seem artificial, but sometimes this situation will occur. For
example, it may be that a new treatment alters the level of a response variable but not its
variability, so that the variability can be assumed to be known from previous experiments. (In
Section 4.8 we discuss a method for comparing the variability of an experiment with previous
established variability; in Chapter 5 the problem of inference when both population mean and
variance are unknown is considered.)

To put the problem more formally, we have a random variable ¥ with unknown population
mean p. A random sample of size n is taken and inferences about p are to be made on the basis
of the sample. We assume that the population variance is known; denote it by o2. Normality
will also be assumed; even when the population is not normal, we may be able to appeal to the
central limit theorem.

A “natural” estimate of the population mean 1 is the sample mean Y. It is a natural estimate
of u because we know that Y is normally distributed with the same mean, p, and variance o2 /n.
Even if Y is not normal, Y is approximately normal on the basis of the central limit theorem.
The statistic Y is called a point estimate since we estimate the parameter u by a single value
or point.

Now the question arises: How precise is the estimate? How can we distinguish between
two samples of, say, 25 and 100 observations? Both may give the same—or approximately the
same—sample mean, but we know that the mean based on the 100 observations is more accurate,
that is, has a smaller standard error. One possible way of summarizing this information is to give
the sample mean and its standard error. This would be useful for comparing two samples. But
this does not seem to be a useful approach in considering one sample and its information about



86 STATISTICAL INFERENCE: POPULATIONS AND SAMPLES

the parameter. To use the information in the sample, we set up an interval estimate as follows:
Consider the quantity u # (1.96)0/4/n. It describes the spread of sample means; in particular,
95% of means of samples of size n will fall in the interval [u — 1.960//n, u+1.960/+/n]. The
interval has the property that as n increases, the width decreases (refer to Section 4.5 for further
discussion). Suppose that we now replace u by its point estimate, Y. How can we interpret the
resulting interval? Since the sample mean, Y, varies from sample to sample, it cannot mean that
95% of the sample means will fall in the interval for a specific sample mean. The interpretation
is that the probability is 0.95 that the interval straddles the population mean. Such an interval
is referred to as a 95% confidence interval for the population mean, u. We now formalize this
definition.

Definition 4.17. A 100(1 —a)% confidence interval for the mean p of a normal population
(with variance known) based on a random sample of size n is

— o
YEtziap—
n

7

where z1_4/2 is the value of the standard normal deviate such that 100(1 — )% of the area falls
within £z1_4/2.

Strictly speaking, we should write

— o — o
<Y+Za/2ﬁv Y“I‘Zl—a/Zﬁ)

but by symmetry, z4/2 = —z1—«/2, SO that it is quicker to use the expression above.

Example 4.8. In Section 3.3.1 we discussed the age at death of 78 cases of crib death
(SIDS) occurring in King County, Washington, in 1976-1977. Birth certificates were obtained
for these cases and birthweights were tabulated. Let ¥ = birthweight in grams. Then, for these
78 cases, Y = 2993.6 = 2994 g. From a listing of all the birthweights, it is known that the
standard deviation of birthweight is about 800 g (i.e., 0 = 800 g). A 95% confidence interval
for the mean birthweight of SIDS cases is calculated to be

800
2994 + (1.96) <—> or 2994 £ (1.96)(90.6) or 2994+ 178

V78

producing a lower limit of 2816 g and an upper limit of 3172 g. Thus, on the basis of these
data, we are 95% confident that we have straddled the population mean, u, of birthweight of
SIDS infants by the interval (2816, 3172).

Suppose that we had wanted to be more confident: say, a level of 99%. The value of Z now
becomes 2.58 (from Table A.2), and the corresponding limits are 2994 + (2.58)(800/ \/7_8), or
(2760, 3228). The width of the 99% confidence interval is greater than that of the 95% confidence
interval (468 g vs. 356 g), the price we paid for being more sure that we have straddled the
population mean.

Several comments should be made about confidence intervals:

1. Since the population mean p is fixed, it is not correct to say that the probability is 1 — «
that w is in the confidence interval once it is computed; that probability is zero or 1. Either
the mean is in the interval and the probability is equal to 1, or the mean is not in the
interval and the probability is zero.
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2. We can increase our confidence that the interval straddles the population mean by decreas-
ing a, hence increasing Zj_4/2. We can take values from Table A.2 to construct the
following confidence levels:

Confidence Level Z-Value

90% 1.64
95% 1.96
99% 2.58
99.9% 3.29

The effect of increasing the confidence level will be to increase the width of the confidence
interval.

3. To decrease the width of the confidence interval, we can either decrease the confidence
level or increase the sample size. The width of the interval is 2zi_y/20/+/n. For a fixed
confidence level the width is essentially a function of o/+/n, the standard error of the
mean. To decrease the width by a factor of, say, 2, the sample size must be increased by
a factor of 4, analogous to the discussion in Section 4.5.2.

4. Confidence levels are usually taken to be 95% or 99%. These levels are a matter of
convention; there are no theoretical reasons for choosing these values. A rough rule to
keep in mind is that a 95% confidence interval is defined by the sample mean £2 standard
errors (not standard deviations).

4.6.2 Hypothesis Testing

In estimation, we start with a sample statistic and make a statement about the population param-
eter: A confidence interval makes a probabilistic statement about straddling the population
parameter. In hypothesis testing, we start by assuming a value for a parameter, and a prob-
ability statement is made about the value of the corresponding statistic. In this section, as in
Section 4.6.1, we assume that the population variance is known and that we want to make infer-
ences about the mean of a normal population on the basis of a sample mean. The basic strategy
in hypothesis testing is to measure how far an observed statistic is from a hypothesized value
of the parameter. If the distance is “great” (Figure 4.18) we would argue that the hypothesized
parameter value is inconsistent with the data and we would be inclined to reject the hypothesis
(we could be wrong, of course; rare events do happen).

To interpret the distance, we must take into account the basic variability (62) of the obser-
vations and the size of the sample (n) on which the statistic is based. As a rough rule of thumb
that is explained below, if the observed value of the statistic is more than two standard errors
from the hypothesized parameter value, we question the truth of the hypothesis.

To continue Example 4.8, the mean birthweight of the 78 SIDS cases was 2994 g. The
standard deviation oy was assumed to be 800 g, and the standard error o//n = 800/+/78 =
90.6 g. One question that comes up in the study of SIDS is whether SIDS cases tend to have
a different birthweight than the general population. For the general population, the average
birthweight is about 3300 g. Is the sample mean value of 2994 g consistent with this value?
Figure 4.19 shows that the distance between the two values is 306 g. The standard error is 90.6,

Distance
~
-~ ~

- +

Hypothesized parameter value Observed value of statistic

A\

Figure 4.18 Great distance from a hypothesized value of a parameter.
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Distance = 306 g or 306/90.6 == 3.38 standard errors

-~

2094 g 3300 g
Average of sample of 78 SIDS cases General population

Y

-
&

Figure 4.19 Distance between the two values is 306 g.

so the observed value is 306/90.6 = 3.38 standard errors from the hypothesized population
mean. By the rule we stated, the distance is so great that we would conclude that the mean
of the sample of SIDS births is inconsistent with the mean value in the general population.
Hence, we would conclude that the SIDS births come from a population with mean birthweight
somewhat less than that of the general population. (This raises more questions, of course: Are the
gestational ages comparable? What about the racial composition? and so on.) The best estimate
we have of the mean birthweight of the population of SIDS cases is the sample mean: in this
case, 2994 g, about 300 g lower than that for the normal population.

Before introducing some standard hypothesis testing terminology, two additional points

should be made:

1. We have expressed “distance” in terms of number of standard errors from the hypothesized

parameter value. Equivalently, we can associate a tail probability with the observed value
of the statistic. For the sampling situation described above, we know that the sample mean
Y is normally distributed with standard error o//n. As Figure 4.20 indicates, the farther
away the observed value of the statistic is from the hypothesized parameter value, the
smaller the area (probability) in the tail. This tail probability is usually called the p-value.
For example (using Table A.2), the area to the right of 1.96 standard errors is 0.025; the
area to the right of 2.58 standard errors is 0.005. Conversely, if we specify the area, the
number of standard errors will be determined.

. Suppose that we planned before doing the statistical test that we would not question

the hypothesized parameter value if the observed value of the statistic fell within, say,
two standard errors of the parameter value. We could divide the sample space for the
statistic (i.e., the real line) into three regions as shown in Figure 4.21. These regions
could have been set up before the value of the statistic was observed. All that needs to be
determined then is in which region the observed value of the statistic falls to determine
if it is consistent with the hypothesized value.

A L

Hypothesized  Observed Y
Parameter Value of
Value Statistic

Figure 4.20 The farther away the observed value of a statistic from the hypothesized value of a parameter,
the smaller the area in the tail.
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Figure 4.21 Sample space for the statistic.

We now formalize some of these concepts:

Definition 4.18. A null hypothesis specifies a hypothesized real value, or values, for a
parameter (see Note 4.15 for further discussion).

Definition 4.19. The rejection region consists of the set of values of a statistic for which
the null hypothesis is rejected. The values of the boundaries of the region are called the critical
values.

Definition 4.20. A Type I error occurs when the null hypothesis is rejected when, in fact,
it is true. The significance level is the probability of a Type I error when the null hypothesis
is true.

Definition 4.21. An alternative hypothesis specifies a real value or range of values for a
parameter that will be considered when the null hypothesis is rejected.

Definition 4.22. A Type II error occurs when the null hypothesis is not rejected when it is
false.

Definition 4.23. The power of a test is the probability of rejecting the null hypothesis when
it is false.

NN ) ————
-
“It may very well bring about immortality, but it will take forever to testit.™
© 1976 by Sidney Harris — American Scientist Magazine

Cartoon 4.1 Testing some hypotheses can be tricky. (From American Scientist, March—April 1976.)
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Definition 4.24. The p-value in a hypothesis testing situation is that value of p,0 < p <1,
such that for &« > p the test rejects the null hypothesis at significance level «, and for @ < p
the test does not reject the null hypothesis. Intuitively, the p-value is the probability under the
null hypothesis of observing a value as unlikely or more unlikely than the value of the test
statistic. The p-value is a measure of the distance from the observed statistic to the value of the
parameter specified by the null hypothesis.

Notation

1. The null hypothesis is denoted by Hy the alternative hypothesis by H4.

2. The probability of a Type I error is denoted by «, the probability of a Type II error by .
The power is then

power = 1 — probability of Type II error
=1-8

Continuing Example 4.8, we can think of our assessment of the birthweight of SIDS babies
as a type of decision problem illustrated in the following layout:

State of Nature SIDS Birthweights

Decision SIDS Birthweights =~ Same as Normal Not the Same

Same as normal Correct (1 —«) Type II error (B)
Not the same Type I error ()  Correct (1 — B)

This illustrates the two types of errors that can be made depending on our decision and the
state of nature. The null hypothesis for this example can be written as

Hp:pn=3300¢g
and the alternative hypothesis written as
Hy #3300 g

Suppose that we want to reject the null hypothesis when the sample mean Y is more than
two standard errors from the Hy value of 3300 g. The standard error is 90.6 g. The rejection
region is then determined by 3300 £ (2)(90.6) or 3300 £ 181.

We can then set up the hypothesis-testing framework as indicated in Figure 4.22. The rejection
region consists of values to the left of 3119 g (i.e., u —20/+/n) and to the right of 3481 g (i.e.,
w + 20/+/n). The observed value of the statistic, ¥ = 2994 g, falls in the rejection region,
and we therefore reject the null hypothesis that SIDS cases have the same mean birthweight as
normal children. On the basis of the sample value observed, we conclude that SIDS babies tend
to weigh less than normal babies.

Reject Hy Do not reject Hy Reject Hy
4 319 g Hy:p=3300¢g 3481 g ¥y

Observed Value = 2994 g

Figure 4.22 Hypothesis-testing framework for birthweight assessment.
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The probability of a Type I error is the probability that the mean of a sample of 78 observations
from a population with mean 3300 g is less than 3119 g or greater than 3481 g:

P[3119 <Y <3481] =P <Zc<
90.6 90.6

=P[-2=<Z <+2]

- |:3119—3300 3481 —3300]

where Z is a standard normal deviate.
From Table A.1,

P[Z <2]=009772
so that
1—P[-2<Z <2]=(2)(0.0228) = 0.0456

the probability of a Type I error. The probability is 0.0455 from the two-sided p-value of
Table A.1. The difference relates to rounding.

The probability of a Type II error can be computed when a value for the parameter under
the alternative hypothesis is specified. Suppose that for these data the alternative hypothesis is

Hy o =3000 g

this value being suggested from previous studies. To calculate the probability of a Type II
error—and the power—we assume that Y, the mean of the 78 observations, comes from a
normal distribution with mean 3000 g and standard error as before, 90.6 g. As Figure 4.23
indicates, the probability of a Type II error is the area over the interval (3119, 3481). This can
be calculated as

P[Type II error] = P[3119 < Y < 3481]

3119 — 3000 3481 — 3000
= < 7zZ <
90.6 -~ 90.6
= P[1.31 < Z <5.31]
=1-0.905
= 0.095

So B = 0.095 and the power is 1 — B = 0.905. Again, these calculations can be made
before any data are collected, and they say that if the SIDS population mean birthweight were
3000 g and the normal population birthweight 3300 g, the probability is 0.905 that a mean from
a sample of 78 observations will be declared significantly different from 3300 g.

«——— Do not reject Hy —
Probability of Type It |

3000 3119 © 3300 3481

<1

Y = mean birthweight (grams) of 78 SIDS cases
Figure 4.23 Probability of a Type II error.
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Let us summarize the analysis of this example:

Hy:pnu=3300g
Hy : o =3000¢g
o = 800 g (known)
Hypothesis-testing setup n="178

(no data taken) rejection region: + 2 standard errors from 3000 g
a = 0.0456
B =0.095
1 -8 =0.905

Observe: Y = 2994

Conclusion: Reject Hy

The value of « is usually specified beforehand: The most common value is 0.05, some-
what less common values are 0.01 or 0.001. Corresponding to the confidence level in interval
estimation, we have the significance level in hypothesis testing. The significance level is often
expressed as a percentage and defined to be 100a%. Thus, for o = 0.05, the hypothesis test is
carried out at the 5%, or 0.05, significance level.

The use of a single symbol 8 for the probability of a Type II error is standard but a bit
misleading. We expect § to stand for one number in the same way that « stands for one number.
In fact, B is a function whose argument is the assumed true value of the parameter being tested.
For example, in the context of Hy : u = 3000 g, 8 is a function of u and could be written
B(w). It follows that the power is also a function of the true parameter: power = 1 — B(u).
Thus one must specify a value of i to compute the power.

We finish this introduction to hypothesis testing with a discussion of the one- and two-tailed
test. These are related to the choice of the rejection region. Even if « is specified, there is an
infinity of rejection regions such that the area over the region is equal to «. Usually, only two
types of regions are considered as shown in Figure 4.24. A two-tailed test is associated with a

(Two tail test)

Reject Do not reject Reject

(One tail test)

Area = 1-0

F
>y

Reject Do not reject

Figure 4.24 Two types of regions considered in hypothesis testing.
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4 =035
.

3151 grams u=3|300 grams

Reject Hy Do not reject Hy

Figure 4.25 Start of the rejection region in a one-tailed test.

rejection region that extends both to the left and to the right of the hypothesized parameter value.
A one-tailed test is associated with a region to one side of the parameter value. The alternative
hypothesis determines the type of test to be carried out. Consider again the birthweight of SIDS
cases. Suppose we know that if the mean birthweight of these cases is not the same as that of
normal infants (3300 g), it must be less; it is not possible for it to be more. In that case, if the
null hypothesis is false, we would expect the sample mean to be below 3300 g, and we would
reject the null hypothesis for values of ¥ below 3300 g. We could then write the null hypothesis
and alternative hypothesis as follows:

Hp:pn=3300¢g
Hy:p <3300¢g

We would want to carry out a one-tailed test in this case by setting up a rejection region to
the left of the parameter value. Suppose that we want to test at the 0.05 level, and we only want
to reject for values of Y below 3300 g. From Table A.2 we see that we must locate the start
of the rejection region 1.64 standard errors to the left of u = 3300 g, as shown in Figure 4.25.
The value is 3300 — (1.64)(800/+/78) or 3300 — (1.64)(90.6) = 3151 g.

Suppose that we want a two-tailed test at the 0.05 level. The Z-value (Table A.2) is now
1.96, which distributes 0.025 in the left tail and 0.025 in the right tail. The corresponding values
for the critical region are 3300 £ (1.96)(90.6) or (3122, 3478), producing a region very similar
to the region calculated earlier.

The question is: When should you do a one-tailed test and when a two-tailed test? As
was stated, the alternative hypothesis determines this. An alternative hypothesis of the form
Hy @ # po is called two-sided and will require a two-tailed test. Similarly, the alternative
Hy @ < o is called one-sided and will lead to a one-tailed test. So should the alternative
hypothesis be one- or two-sided? The experimental situation will determine this. For example,
if nothing is known about the effect of a proposed therapy, the alternative hypothesis should
be made two-sided. However, if it is suspected that a new therapy will do nothing or increase
a response level, and if there is no reason to distinguish between no effect and a decrease in
the response level, the test should be one-tailed. The general rule is: The more specific you can
make the experiment, the greater the power of the test (see Fleiss et al. [2003, Sec. 2.4]). (See
Problem 4.33 to convince yourself that the power of a one-tailed test is greater if the alternative
hypothesis specifies the situation correctly.)

4.7 CONFIDENCE INTERVALS VS. TESTS OF HYPOTHESES

You may have noticed that there is a very close connection between the confidence intervals and
the tests of hypotheses that we have constructed. In both approaches we have used the standard
normal distribution and the quantity o.

In confidence intervals we:

1. Specity the confidence level (1 — o).
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2. Read z1_g4/2 from a standard normal table.
3. Calculate Y & z1_q20//1.

In hypothesis testing we:

. Specify the null hypothesis (Hp : i = o).
. Specity «, the probability of a Type I error.
. Read z1_4/2 from a standard normal table.
. Calculate o =+ Zlfa/g(f/ﬁ.

. Observe Y; reject or accept Ho.

N B W N =

The two approaches can be represented pictorially as shown in Figure 4.26. It is easy to
verify that if the confidence interval does not straddle o (as is the case in the figure), Y will
fall in the rejection region, and vice versa. Will this always be the case? The answer is “yes.”
When we are dealing with inference about the value of a parameter, the two approaches will
give the same answer. To show the equivalence algebraically, we start with the key inequality

Y —p

P |:_Zla/2 < o/ < Zla/2:| =l-«a

If we solve the inequality for Y, we get

— o — _
P[M—Zl 2 Y<pt D “/2]=1—a

v Vn

Given a value u = po, the statement produces a region (o %+ zl_a/za/ﬁ) within which
100(1 — )% of sample means fall. If we solve the inequality for u, we get

= 2l-a/20 = Z-a/20
PlY - — <u<Yy+-—"L|=1-
[ N Jn ] ¢

This is a confidence interval for the population mean p. In Chapter 5 we examine this approach
in more detail and present a general methodology.

Confidence
Interval
1 rd ] by
N \ 7
1 (0 1 i
o o Z1-a/2% Y 5 Z1-arn¥y
Yo Y05
Hypothesis
Test
B . I T v e cd i
(0 1 (0
Zy_ w120 Mo Zy a2
y — Sizs o+ 222520

Figure 4.26 Confidence intervals vs. tests of hypothesis.
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If confidence intervals and hypothesis testing are but two sides of the same coin, why
bother with both? The answer is (to continue the analogy) that the two sides of the coin are
not the same; there is different information. The confidence interval approach emphasizes the
precision of the estimate by means of the width of the interval and provides a point estimate
for the parameter, regardless of any hypothesis. The hypothesis-testing approach deals with the
consistency of observed (new) data with the hypothesized parameter value. It gives a probability
of observing the value of the statistic or a more extreme value. In addition, it will provide a
method for estimating sample sizes. Finally, by means of power calculations, we can decide
beforehand whether a proposed study is feasible; that is, what is the probability that the study
will demonstrate a difference if a (specified) difference exists?

You should become familiar with both approaches to statistical inference. Do not use one to
the exclusion of another. In some research fields, hypothesis testing has been elevated to the only
“proper” way of doing inference; all scientific questions have to be put into a hypothesis-testing
framework. This is absurd and stultifying, particularly in pilot studies or investigations into
uncharted fields. On the other hand, not to consider possible outcomes of an experiment and the
chance of picking up differences is also unbalanced. Many times it will be useful to specify very
carefully what is known about the parameter(s) of interest and to specify, in perhaps a crude
way, alternative values or ranges of values for these parameters. If it is a matter of emphasis,
you should stress hypothesis testing before carrying out a study and estimation after the study
has been done.

4.8 INFERENCE ABOUT THE VARIANCE OF A POPULATION

4.8.1 Distribution of the Sample Variance

In previous sections we assumed that the population variance of a normal distribution was
known. In this section we want to make inferences about the population variance on the basis
of a sample variance. In making inferences about the population mean, we needed to know
the sampling distribution of the sample mean. Similarly, we need to know the sampling dis-
tribution of the sample variance in order to make inferences about the population variance;
analogous to the statement that for a normal random variable, Y, with sample mean Y, the
quantity

Y—n

o/Jn

has a normal distribution with mean 0 and variance 1. We now state a result about the quantity
(n — 1)s%/o%. The basic information is contained in the following statement:

Result 4.4. If a random variable Y is normally distributed with mean x and variance o2,

then for a random sample of size n the quantity (n — 1)s2/02 has a chi-square distribution with
n — 1 degrees of freedom.

Each distribution is indexed by n — 1 degrees of freedom. Recall that the sample variance is
calculated by dividing 3 (y — )2 by n — 1, the degrees of freedom.

The chi-square distribution is skewed; the amount of skewness decreases as the degrees of
freedom increases. Since (n — 1)s% /0% can never be negative, the sample space for the chi-square
distribution is the nonnegative part of the real line. Several chi-square distributions are shown
in Figure 4.27. The mean of a chi-square distribution is equal to the degrees of freedom, and



96 STATISTICAL INFERENCE: POPULATIONS AND SAMPLES

04

0.2 -

01 -

0 2 4 6 8 10 12 14
Figure 4.27 Chi-square distributions.

the variance is twice the degrees of the freedom. Formally,

12
E [(”a#] e 1)
(n = 1)s?
var [T] =2(n-1) 2)

It may seem somewhat strange to talk about the variance of the sample variance, but under
repeated sampling the sample variance will vary from sample to sample, and the chi-square
distribution describes this variation if the observations are from a normal distribution.

Unlike the normal distribution, a tabulation of the chi-square distribution requires a separate
listing for each degree of freedom. In Table A.3, a tabulation is presented of percentiles of the
chi-square distribution. For example, 95% of chi-square random variables with 10 degrees of
freedom have values less than or equal to 18.31. Note that the median (50th percentile) is very
close to the degrees of freedom when the number of the degrees of freedom is 10 or more.

The symbol for a chi-square random variable is Xz’ the Greek lowercase letter chi, to the
power of 2. So we usually write x> = (n — 1)s>/o2. The degrees of freedom are usually
indicated by the Greek lowercase letter v (nu). Hence, Xf is a symbol for a chi-square random
variable with v degrees of freedom. It is not possible to maintain the notation of using a capital
letter for a variable and the corresponding lowercase letter for the value of the variable.

4.8.2 Inference about a Population Variance

We begin with hypothesis testing. We have a sample of size n from a normal distribution, the
sample variance s> has been calculated, and we want to know whether the value of s> observed
is consistent with a hypothesized population value ag, perhaps known from previous research.
Consider the quantity
,  (n—1s?
o2
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If s2 is very close to crz, the ratio s2 /cr2 is close to 1; if s2 differs very much from 02, the ratio
is either very large or very close to 0: This implies that x2 = (n — 1)s2/c? is either very large
or very small, and we would want to reject the null hypothesis. This procedure is analogous to a
hypothesis test about a population mean; we measured the distance of the observed sample mean
from the hypothesized value in units of standard errors; in this case we measure the “distance”
in units of the hypothesized variance.

Example 4.9. The SIDS cases discussed in Section 3.3.1 were assumed to come from a
normal population with variance o2 = (800)2. To check this assumption, the variance, s2, is
calculated for the first 11 cases occurring in 1969. The birthweights (in grams) were

3374,3515,3572,2977,4111, 1899, 3544, 3912, 3515, 3232, 3289
The sample variance is calculated to be
s? = (574.3126 g)?

The observed value of the chi-square quantity is

, (11— 1)(574.3126)*
N (800)2
= 5.15 with 10 degrees of freedom

Figure 4.14 illustrates the chi-square distribution with 10 degrees of freedom. The 2.5th and
97.5th percentiles are 3.25 and 20.48 (see Table A.3). Hence, 95% of chi-square values will fall
between 3.25 and 20.48.

If we follow the usual procedure of setting our significance level at « = 0.05, we will not
reject the null hypothesis that o2 = (800 g)?, since the observed value x2 = 5.15 is less extreme
than 3.25. Hence, there is not sufficient evidence for using a value of o2 not equal to 800 g.

As an alternative to setting up the rejection regions formally, we could have noted, using
Table A.3, that the observed value of x> = 5.15 is between the 5th and 50th percentiles, and
therefore the corresponding two-sided p-value is greater than 0.10.

A 100(1 — @)% confidence interval is constructed using the approach of Section 4.7. The
key inequality is

P[on,/z = X2 = Xlz_a/z] =1l-«a

The degrees of freedom are not indicated but assumed to be n — 1. The values Xo% 1 and Xl{ )2
are chi-square values such that 1 — « of the area is between them. (In Figure 4.14, these values
are 3.25 and 20.48 for 1 — o = 0.95.)

The quantity x2 is now replaced by its equivalent, (n — 1)s2/o2, so that

2
5 (n—1)s 5
P |:Xa/2 =—7 = lea/2i| =l-a

If we solve for o2, we obtain a 100(1 — @)% confidence interval for the population variance. A
little algebra shows that this is

2 2
P|:(n—1)s (= Ds }zl_a

2 =0 ="73
Xi—a/2 Xaj2
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Figure 4.28 Chi-square distribution with 10 degrees of freedom.

Given an observed value of s2, the confidence interval required can now be calculated.
To continue our example, the variance for the 11 SIDS cases above is s2 = (574.3126 g).
For 1 —a = 0.95, the values of x2 are (see Figure 4.28)

Xoos =325, x3gys = 20.48
We can write the key inequality then as
P[3.25 < x? < 20.48] = 0.95

The 95% confidence interval for 2 can then be calculated:

2 2
(10)(574.3126) <ol < (10)(574.3126)
20.48 - T 3.25

and simplifying yields
161,052 < 0 < 1,014,877

The corresponding values for the population standard deviation are

lower 95% limit for 0 = /161,052 =401 g
upper 95% limit for o = /1,014,877 = 1007 g

These are rather wide limits. Note that they include the null hypothesis value of o = 800 g.
Thus, the confidence interval approach leads to the same conclusion as the hypothesis-testing
approach.

NOTES

4.1 Definition of Probability

The relative frequency definition of probability was advanced by von Mises, Fisher, and others
(see Hacking [1965]). A radically different view is held by the personal or subjective school,
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exemplified in the work of De Finetti, Savage, and Savage. According to this school, probability
reflects subjective belief and knowledge that can be quantified in terms of betting behavior.
Savage [1968] states: “My probability for the event A under circumstances H is the amount of
money [ am indifferent to betting on A in an elementary gambling situation.” What does Savage
mean? Consider the thumbtack experiment discussed in Section 4.3.1. Let the event A be that
the thumbtack in a single toss falls L. The other possible outcome is T; call this event B. You
are to bet a dollars on A and b dollars on B, such that you are indifferent to betting either on
A or on B (you must bet). You clearly would not want to put all your money on A; then you
would prefer outcome A. There is a split, then, in the total amount, a + b, to be bet so that you
are indifferent to either outcome A or B. Then your probability of A, P[A], is

p[A]_L
T a+b

If the total amount to be bet is 1 unit, you would split it 1 — P, P, where 0 < P < 1, so that

A= e =7

The bet is a device to link quantitative preferences for amounts b and a of money, which are
assumed to be well understood, to preferences for degrees of certainty, which we are trying to
quantify. Note that Savage is very careful to require the estimate of the probability to be made
under as specified circumstances. (If the thumbtack could land, say, T on a soft surface, you
would clearly want to modify your probability.) Note also that betting behavior is a definition
of personal probability rather than a guide for action. In practice, one would typically work
out personal probabilities by comparison to events for which the probabilities were already
established (Do I think this event is more or less likely than a coin falling heads?) rather than
by considering sequences of bets.

This definition of probability is also called personal probability. An advantage of this view
is that it can discuss more situations than the relative frequency definition, for example: the
probability (rather, my probability) of life on Mars, or my probability that a cure for cancer will
be found. You should not identify personal probability with the irrational or whimsical. Personal
probabilities do utilize empirical evidence, such as the behavior of a tossed coin. In particular,
if you have good reason to believe that the relative frequency of an event is P, your personal
probability will also be P. It is possible to show that any self-consistent system for choosing
between uncertain outcomes corresponds to a set of personal probabilities.

Although different individuals will have different personal probabilities for an event, the way
in which those probabilities are updated by evidence is the same. It is possible to develop statis-
tical analyses that summarize data in terms of how it should change one’s personal probabilities.
In simple analyses these Bayesian methods are more difficult to use than those based on relative
frequencies, but the situation is reversed for some complex models. The use of Bayesian statis-
tics is growing in scientific and clinical research, but it is still not supported by most standard
software. An introductory discussion of Bayesian statistics is given by Berry [1996], and more
advanced books on practical data analysis include Gelman et al. [1995] and Carlin and Louis
[2000]. There are other views of probability. For a survey, see the books by Hacking [1965]
and Barnett [1999] and references therein.

4.2 Probability Inequalities

For the normal distribution, approximately 68% of observations are within one standard deviation
of the mean, and 95% of observations are within two standard deviations of the mean. If the
distribution is not normal, a weaker statement can be made: The proportion of observations
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within K standard deviations of the mean is greater than or equal to (1 — 1/K?); notationally,
for a variable Y,

1
Ki|§1——

<Y—E(Y)<
=—= K2

P |:—K

o
where K is the number of standard deviations from the mean. This is a version of Chebyshev’s
inequality. For example, this inequality states that at least 75% of the observations fall within
two standard deviations of the mean (compared to 95% for the normal distribution). This is not
nearly as stringent as the first result stated, but it is more general. If the variable Y can take on
only positive values and the mean of Y is u, the following inequality holds:

PIY<yi<1-%
y
This inequality is known as the Markov inequality.

4.3 Inference vs. Decision

The hypothesis tests discussed in Sections 4.6 and 4.7 can be thought of as decisions that are
made with respect to a value of a parameter (or state of nature). There is a controversy in
statistics as to whether the process of inference is equivalent to a decision process. It seems that
a “decision” is sometimes not possible in a field of science. For example, it is not possible at
this point to decide whether better control of insulin levels will reduce the risk of neuropathy
in diabetes mellitus. In this case and others, the types of inferences we can make are more
tenuous and cannot really be called decisions. For an interesting discussion, see Moore [2001].
This is an excellent book covering a variety of statistical topics ranging from ethical issues in
experimentation to formal statistical reasoning.

4.4 Representative Samples

A random sample from a population was defined in terms of repeated independent trials or
drawings of observations. We want to make a distinction between a random and a representative
sample. A random sample has been defined in terms of repeated independent sampling from a
population. However (see Section 4.3.2), cancer patients treated in New York are clearly not a
random sample of all cancer patients in the world or even in the United States. They will differ
from cancer patients in, for instance, Great Britain in many ways. Yet we do frequently make
the assumption that if a cancer treatment worked in New York, patients in Great Britain can also
benefit. The experiment in New York has wider applicability. We consider that with respect to
the outcome of interest in the New York cancer study (e.g., increased survival time), the New
York patients, although not a random sample, constitute a representative sample. That is, the
survival times are a random sample from the population of survival times.

It is easier to disprove randomness than representativeness. A measure of scientific judgment
is involved in determining the latter. For an interesting discussion of the use of the word
representative, see the papers by Kruskal and Mosteller [1979a—].

4.5 Multivariate Populations

Usually, we study more than one variable. The Winkelstein et al. [1975] study (see Example 4.1)
measured diastolic and systolic blood pressures, height, weight, and cholesterol levels. In the
study suggested in Example 4.2, in addition to 1Q, we would measure physiological and psycho-
logical variables to obtain a more complete picture of the effect of the diet. For completeness
we therefore define a multivariate population as the set of all possible values of a specified set
of variables (measured on the objects of interest). A second category of topics then comes up:
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relationships among the variables. Words such as association and correlation come up in this
context. A discussion of these topics begins in Chapter 9.

4.6 Sampling without Replacement

We want to select two patients at random from a group of four patients. The same patient cannot
be chosen twice. How can this be done? One procedure is to write each name on a slip of paper,
put the four slips of paper in a hat, stir the slips of paper, and—without looking—draw out
two slips. The patients whose names are on the two slips are then selected. This is known as
sampling without replacement. (For the procedure to be fair, we require that the slips of paper
be indistinguishable and well mixed.) The events “outcome on first draw” and “outcome on
second draw” are clearly not independent. If patient A is selected in the first draw, she is no
longer available for the second draw. Let the patients be labeled A, B, C, and D. Let the symbol
AB mean “patient A is selected in the first draw and patient B in the second draw.” Write down
all the possible outcomes; there are 12 of them as follows:

AB BA CA DA
AC BC CB DB
AD BD CD DC

We define the selection of two patients to be random if each of the 12 outcomes is equally
likely, that is, the probability that a particular pair is chosen is 1/12. This definition has intuitive
appeal: We could have prepared 12 slips of paper each with one of the 12 pairs recorded and
drawnout one slip of paper. If the slip of paper is drawn randomly, the probability is 1/12 that
a particular slip will be selected.

One further comment. Suppose that we only want to know which two patients have been
selected (i.e., we are not interested in the order). For example, what is the probability that
patients C and D are selected? This can happen in two ways: CD or DC. These events are
mutually exclusive, so that the required probability is P[CD or DC] = P[CD] + P[DC] =
1/12+1/12 =1/6.

4.7 Pitfalls in Sampling

It is very important to define the population of interest carefully. Two illustrations of rather
subtle pitfalls are Berkson’s fallacy and length-biased sampling. Berkson’s fallacy is discussed
in Murphy [1979] as follows: In many studies, hospital records are reviewed or sampled to
determine relationships between diseases and/or exposures. Suppose that a review of hospital
records is made with respect to two diseases, A and B, which are so severe that they always
lead to hospitalization. Let their frequencies in the population at large be p; and p,. Then,
assuming independence, the probability of the joint occurrence of the two diseases is pjps.
Suppose now that a healthy proportion p3 of subjects (H) never go to the hospital; that is,
P[H] = p3. Now write H as that part of the population that will enter a hospital at some
time; then P[H] = 1 — p3. By the rule of conditional probability, P[A|H] = P[AH]/P[H] =
p1/(1 — p3). Similarly, P[B|H] = p2/(1 — p3) and P[AB|H] = p1p2/(1— p3), and this is not
equal to P[A|H|P[B|H] = [p1/(1 = p3)][p2/(1 = p3)], which must be true in order for the two
diseases to be unrelated in the hospital population. Now, you can show that P[AB|H] < P[AB],
and, quoting Murphy:

The hospital observer will find that they occur together less commonly than would be expected if
they were independent. This is known as Berkson’s fallacy. It has been a source of embarrassment
to many an elegant theory. Thus, cirrhosis of the liver and common cancer are both reasons for
admission to the hospital. A priori, we would expect them to be less commonly associated in the
hospital than in the population at large. In fact, they have been found to be negatively correlated.
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Table 4.4 Expected Composition of Visit-Based Sample
in a Hypothetical Population

Type of Patient

Variable Hypertensive =~ Other  Total

Number of patients 200 800 1000

Visits per patient per year 12 1 13

Visits contributed 2400 800 3200

Expected number of patients 72 24 96
in a 3% sample of visits

Expected percent of sample 75 25 100

Source: Shepard and Neutra [1977].

(Murphy’s book contains an elegant, readable exposition of probability in medicine; it will
be worth your while to read it.)

A second pitfall deals with the area of length-biased sampling. This means that for a particular
sampling scheme, some objects in the population may be more likely to be selected than others. A
paper by Shepard and Neutra [1977] illustrates this phenomenon in sampling medical visits. Our
discussion is based on that paper. The problem arises when we want to make a statement about a
population of patients that can only be identified by a sample of patient visits. Therefore, frequent
visitors will be more likely to be selected. Consider the data in Table 4.4, which illustrates that
although hypertensive patients make up 20% of the total patient population, a sample based on
visits would consist of 75% hypertensive patients and 25% other.

There are other areas, particularly screening procedures in chronic diseases, that are at risk
for this type of problem. See Shepard and Neutra [1977] for suggested solutions as well as
references to other papers.

4.8 Other Sampling Schemes

In this chapter (and almost all the remainder of the book) we are assuming simple random
sampling, that is, sampling where every unit in the population is equally likely to end up in the
sample, and sampling of different units is independent. A sufficiently large simple random sample
will always be representative of the population. This intuitively plausible result is made precise
in the mathematical result that the empirical cumulative distribution of the sample approaches
the true cumulative distribution of the population as the sample size increases.

There are some important cases where other random sampling strategies are used, trading
increased mathematical complexity for lower costs in obtaining the sample. The main techniques
are as follows:

1. Stratified sampling. Suppose that we sampled 100 births to study low birthweight. We
would expect to see about one set of twins on average, but might be unlucky and not
sample any. As twins are much more likely to have low birthweight, we would prefer a
sampling scheme that fixed the number of twins we observed.

2. Unequal probability sampling. In conjunction with stratified sampling, we might want
to increase the number of twin births that we examined to more than the 1/90 in the
population. We might decide to sample 10 twin births rather than just one.

3. Cluster sampling. In a large national survey requiring face-to-face interviews or clinical
tests, it is not feasible to use a simple random sample, as this would mean that nearly
every person sampled would live in a different town or city. Instead, a number of cities
or counties might be sampled and simple random sampling used within the selected
geographic regions.



NOTES 103

4. Two-phase sampling. It is sometimes useful to take a large initial sample and then take
a smaller subsample to measure more expensive or difficult variables. The probability of
being included in the subsample can then depend on the values of variables measured
at the first stage. For example, consider a study of genetic influences on lung cancer.
Lung cancer is rare, so it would be sensible to use a stratified (case—control) sampling
scheme where an equal number of people with and without lung cancer was sampled. In
addition, lung cancer is extremely rare in nonsmokers. If a first-stage sample asked about
smoking status it would be possible to ensure that the more expensive genetic information
was obtained for a sufficient number of nonsmoker cancer cases as well as smokers with
cancer.

These sampling schemes have two important features in common. The sampling scheme is
fully known in advance, and the sampling is random (even if not with equal probabilities).
These features mean that a valid statistical analysis of the results is possible. Although the
sample is not representative of the population, it is unrepresentative in ways that are fully under
the control of the analyst. Complex probability samples such as these require different analyses
from simple random samples, and not all statistical software will analyze them correctly. The
section on Survey Methods of the American Statistical Association maintains a list of statistical
software that analyzes complex probability samples. It is linked from the Web appendix to this
chapter. There are many books discussing both the statistical analysis of complex surveys and
practical considerations involved in sampling, including Levy and Lemeshow [1999], Lehtonen
and Pahkinen [1995], and Lohr [1999]. Similar, but more complex issues arise in environmental
and ecological sampling, where measurement locations are sampled from a region.

4.9 How to Draw a Random Sample

In Note 4.6 we discussed drawing a random sample without replacement. How can we draw
samples with replacement? Simply, of course, the slips could be put back in the hat. However,
in some situations we cannot collect the total population to be sampled from, due to its size,
for example. One way to sample populations is to use a table of random numbers. Often, these
numbers are really pseudorandom: They have been generated by a computer. Use of such a table
can be illustrated by the following problem: A random sample of 100 patient charts is to be drawn
from a hospital record room containing 45,850 charts. Assume that the charts are numbered in
some fashion from 1 to 45,850. (It is not necessary that they be numbered consecutively or that
the numbers start with 1 and end with 45,850. All that is required is that there is some unique
way of numbering each chart.) We enter the random number table randomly by selecting a page
and a column on the page at random. Suppose that the first five-digit numbers are

06812, 16134, 15195, 84169, and 41316

The first three charts chosen would be chart 06812, 16134, and 15195, in that order. Now what
do we do with the 84169? We can skip it and simply go to 41316, realizing that if we follow
this procedure, we will have to throw out approximately half of the numbers selected.

A second example: A group of 40 animals is to be assigned at random to one of four
treatments A, B, C, and D, with an equal number in each of the treatments. Again, enter the
random number table randomly. The first 10-digit numbers between 1 and 40 will be the numbers
of the animals assigned to treatment A, the second set of 10-digit numbers to treatment B, the
third set to treatment C, and the remaining animals are assigned to treatment D. If a random
number reappears in a subsequent treatment, it can simply be omitted. (Why is this reasonable?)

4.10 Algebra of Expectations

In Section 4.3.3 we discuss random variables, distributions, and expectations of random vari-
ables. We defined E(Y) = Y py for a discrete random variable. A similar definition, involving
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integrals rather than sums, can be made for continuous random variables. We will now state
some rules for working with expectations.

1. If a is a constant, E(aY) = aE(Y).

2. If a and b are constants, E(aY + b) =aE(Y) + b.

3. If X and Y are two random variables, E(X +Y) = E(X) + E(Y).

4. If a and b are constants, E(aX + bY) = E(aX) + E(bY) =aE(X) + bE(Y).

You can demonstrate the first three rules by using some simple numbers and calculating their
average. For example, let y; =2, yo =4, and y3 = 12. The average is

1 1 1

Two additional comments:

1. The second formula makes sense. Suppose that we measure temperature in °C. The average
is calculated for a series of readings. The average can be transformed to °F by the formula

average in °F = 5 X average in °C+ 32

An alternative approach consists of transforming each original reading to °F and then
taking the average. It is intuitive that the two approaches should provide the same answer.

2. It is not true that E(Y = [E Y )2 Again, a small example will verify this. Use the
same three values (y; = 2, y = 4, and y3 = 12). By definition,

224424122 4416+144 164 _
E(YH = +3+ _ i 3+ =5 =546

but
[EM]? =6>=36

Can you think of a special case where the equation E (Y Y= [E (04 )2 is true?

4.11 Bias, Precision, and Accuracy

Using the algebra of expectations, we define a statistic 7 to be a biased estimate of a parameter
T if E(T) # 7. Two typical types of bias are E(T) = t + a, where a is a constant, called
location bias; and E(T) = bt, where b is a positive constant, called scale bias. A simple
example involves the sample variance, s2. A more “natural” estimate of o2 might be

, 2=’
N n

S

This statistic differs from the usual sample variance in division by n rather than n — 1. It can
be shown (you can try it) that

-1
EG)) = "o’
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Figure 4.29 Accuracy involves the concept of bias.

Hence, sf is a biased estimate of 2. The statistic sf can be made unbiased by multiplying sf

by n/(n — 1) (see rule 1 in Note 4.10); that is,

-1
E[ f1s§}= o=
n n n

But n/(n — 1)s2 = s2, so s2 rather than s is an unbiased estimate of o2, We can now discuss
precision and accuracy. Precision refers to the degree of closeness to each other of a set of
values of a variable; accuracy refers to the degree of closeness of these values to the quantity
(parameter) being measured. Thus, precision is an internal characteristic of a set of data, while
accuracy relates the set to an external standard. For example, a thermometer that consistently
reads a temperature 5 degrees too high may be very precise but will not be very accurate. A
second example of the distribution of hits on a target illustrates these two concepts. Figure 4.29
shows that accuracy involves the concept of bias. Together with Note 4.10, we can now make
these concepts more precise. For simplicity we will refer only to location bias.

Suppose that a statistic 7 estimates a quantity 7 in a biased way; E[T] = t + a. The
variance in this case is defined to be E[T — E(T)]?. What is the quantity E[T — 7122 This can
be written as

E[T — 1> = E[T — (vt +a) +a)* = E[T — E[T] +a]?

E[T —1]? E[T — E[T]> &%
(mean square error) = (variance) + (bias)

The quantity E[T — 712 is called the mean square error. If the statistic is unbiased (i.e., a = 0),
the mean square error is equal to the variance (o2).

4.12  Use of the Word Parameter

We have defined parameter as a numerical characteristic of a population of values of a variable.
One of the basic tasks of statistics is to estimate values of the unknown parameter on the basis of
a sample of values of a variable. There are two other uses of this word. Many clinical scientists
use parameter for variable, as in: “We measured the following three parameters: blood pressure,
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amount of plaque, and degree of patient satisfaction.” You should be aware of this pernicious
use and strive valiantly to eradicate it from scientific writing. However, we are not sanguine
about its ultimate success. A second incorrect use confuses parameter and perimeter, as in:
“The parameters of the study did not allow us to include patients under 12 years of age.” A
better choice would have been to use the word limitations.

4.13 Significant Digits (continued)

This note continues the discussion of significant digits in Note 3.4. We discussed approximations
to a quantity due to arithmetical operations, measurement rounding, and finally, sampling vari-
ability. Consider the data on SIDS cases of Example 4.11. The mean birthweight of the 78 cases
was 2994 g. The probability was 95% that the interval 2994 + 178 straddles the unknown quan-
tity of interest: the mean birthweight of the population of SIDS cases. This interval turned out
to be 2816-3172 g, although the last digits in the two numbers are not very useful. In this case
we have carried enough places so that the rule mentioned in Note 3.4 is not applicable. The
biggest source of approximation turns out to be due to sampling. The approximations introduced
by the arithmetical operation is minimal; you can verify that if we had carried more places in
the intermediate calculations, the final confidence interval would have been 2816-3171 g.

4.14 A Matter of Notation

What do we mean by 18+£2.6? In many journals you will find this notation. What does it mean?
Is it mean plus or minus the standard deviation, or mean plus or minus the standard error? You
may have to read a paper carefully to find out. Both meanings are used and thus need to be
specified clearly.

4.15 Formula for the Normal Distribution

The formula for the normal probability density function for a normal random variable Y with

mean p and variance o2 is
1 Liy—nr)’
= exp| —= ( )
fly 5y P T2\
Here, 7 = 3.14159. .., and e is the base of the natural logarithm, e = 2.71828.... A standard
normal distribution has u = 0 and ¢ = 1. The formula for the standard normal random variable,

Z,1s
F@) = ——ex (—lzz)
T V2 P 2

Although most statistical packages will do this for you, the heights of the curve can easily be
calculated using a hand calculator. By symmetry, only one half of the range of values has to
be computed [i.e., f(z) = f(—z)]. For completeness in Table 4.5 we give enough points to
enable you to graph f(z). Given any normal variable y with mean u and variance o2, you can
calculate f(y) by using the relationships

and plotting the corresponding heights:

1
f)=—-71@
o

where Z is defined by the relationship above. For example, suppose that we want to graph the
curve for 1Q, where we assume that IQ is normal with mean u = 100 and standard deviation



PROBLEMS 107

Table 4.5 Heights of the Standard Normal Curve

z f(z) z f(z) z f(z) z f(z) z f(z)

0.0 0.3989 0.5 0.3521 1.0 0.2420 1.5 0.1295 2.0 0.0540
0.1 0.3970 0.6 0.3332 1.1 0.2179 1.6 0.1109 2.1 0.0440
0.2 0.3910 0.7 0.3123 1.2 0.1942 1.7 0.0940 2.2 0.0355
0.3 0.3814 0.8 0.2897 1.3 0.1714 1.8 0.0790 2.3 0.0283
0.4 0.3683 0.9 0.2661 1.4 0.1497 1.9 0.0656 24 0.0224

o = 15. What is the height of the curve for an IQ of 109? In this case, Z = (109—100)/15 = 0.60
and f(IQ) = (1/15) f(z) = (1/15)(0.3332) = 0.0222. The height for an IQ of 91 is the same.

4.16 Null Hypothesis and Alternative Hypothesis

How do you decide which of two hypotheses is the null and which is the alternative? Sometimes
the advice is to make the null hypothesis the hypothesis of “indifference.” This is not helpful;
indifference is a poor scientific attitude. We have three suggestions: (1) In many situations there
is a prevailing view of the science that is accepted; it will continue to be accepted unless
“definitive” evidence to the contrary is produced. In this instance the prevailing view would be
made operational in the null hypothesis. The null hypothesis is often the “straw man” that we
wish to reject. (Philosophers of science tell us that we never prove things conclusively; we can
only disprove theories.) (2) An excellent guide is Occam’s razor, which states: Do not multiply
hypotheses beyond necessity. Thus, in comparing a new treatment with a standard treatment, the
simpler hypothesis is that the treatments have the same effect. To postulate that the treatments
are different requires an additional operation. (3) Frequently, the null hypothesis is one that
allows you to calculate the p-value. Thus, if two treatments are assumed the same, we can
calculate a p-value for the result observed. If we hypothesize that they are not the same, then
we cannot compute a p-value without further specification.

PROBLEMS

4.1 Give examples of populations with the number of elements finite, virtually infinite,
potentially infinite, and infinite. Define a sample from each population.

4.2 Give an example from a study in a research area of interest to you that clearly assumes
that results are applicable to, as yet, untested subjects.

4.3 Tllustrate the concepts of population, sample, parameter, and statistic by two examples
from a research area of your choice.

4.4 In light of the material discussed in this chapter, now review the definitions of statistics
presented at the end of Chapter 1, especially the definition by Fisher.

4.5 In Section 4.3.1, probabilities are defined as long-run relative frequencies. How would
you interpret the probabilities in the following situations?

(a) The probability of a genetic defect in a child born to a mother over 40 years of age.
(b) The probability of you, the reader, dying of leukemia.

(c) The probability of life on Mars.

(d) The probability of rain tomorrow. What does the meteorologist mean?
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Take a thumbtack and throw it onto a hard surface such as a tabletop. It can come to
rest in two ways; label them as follows:

(a) Guess the probability of U. Record your answer.

(b) Now toss the thumbtack 100 times and calculate the proportion of times the
outcome is U. How does this agree with your guess? The observed proportion is
an estimate of the probability of U. (Note the implied distinction between guess
and estimate.)

(¢) In a class situation, split the class in half. Let each member of the first half of
the class toss a thumbtack 10 times and record the outcomes as a histogram: (i)
the number of times that U occurs in 10 tosses; and (ii) the proportion of times
that U occurs in 10 tosses. Each member of the second half of the class will
toss a thumbtack 50 times. Record the outcomes in the same way. Compare the
histograms. What conclusions do you draw?

The estimation of probabilities and the proper combination of probabilities present great
difficulties, even to experts. The best we can do in this book is warn you and point
you to some references. A good starting point is the paper by Tversky and Kahneman
[1974] reprinted in Kahneman et al. [1982]. They categorize the various errors that
people make in assessing and working with probabilities. Two examples from this
book will test your intuition:

(a) Intossing a coin six times, is the sequence HTHHTT more likely than the sequence
HHHHHH? Give your “first impression” answer, then calculate the probabil-
ity of occurrence of each of the two sequences using the rules stated in the
chapter.

(b) The following is taken directly from the book:

A certain town is served by two hospitals. In the larger hospital, about 45 babies are
born each day, and in the smaller hospital about 15 babies are born each day. As
you know, about 50% of all babies are boys. However, the exact percentage varies
from day to day. Sometimes it may be higher than 50%, sometimes lower. For a
period of one year, each hospital recorded the days on which more than 60% of the
babies born were boys. Which hospital do you think recorded more such days? The
larger hospital, the smaller hospital, [or were they] about the same (that is, within
5% of each other)?

Which of the rules and results stated in this chapter have guided your answer?

This problem deals with the gambler’s fallacy, which states, roughly, that if an event has
not happened for a long time, it is “bound to come up.” For example, the probability
of a head on the fifth toss of a coin is assumed to be greater if the preceding four
tosses all resulted in tails than if the preceding four tosses were all heads. This is
incorrect.

(a) What statistical property associated with coin tosses is violated by the fallacy?

(b) Give some examples of the occurrence of the fallacy from your own area of
research.

(c) Why do you suppose that the fallacy is so ingrained in people?
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4.9 Human blood can be classified by the ABO blood grouping system. The four groups

4.10

are A, B, AB, or O, depending on whether antigens labeled A and B are present on
red blood cells. Hence, the AB blood group is one where both A and B antigens are
present; the O group has none of the antigens present. For three U.S. populations, the
following distributions exist:

Blood Group

A B AB (0] Total
Caucasian 044 008 0.03 045 1.00
American black 0.27 020 0.04 049 1.00
Chinese 022 025 0.06 047 1.00

For simplicity, consider only the population of American blacks in the following
question. The table shows that for a person selected randomly from this population,
P[A] =0.27, P[B] = 0.20, P[AB] = 0.04, and P[O] = 0.49.

(a) Calculate the probability that a person is not of blood group A.

(b) Calculate the probability that a person is either A or O. Are these mutually
exclusive events?

(c) What is the probability that a person carries A antigens?
(d) What is the probability that in a marriage both husband and wife are of blood

group O? What rule of probability did you use? (What assumption did you need
to make?)

This problem continues with the discussion of ABO blood groups of Problem 4.9. We
now consider the black and Caucasian population of the United States. Approximately
20% of the U.S. population is black. This produces the following two-way classification
of race and blood type:

Blood Group

A B AB (0] Total
Caucasian 0.352 0.064 0.024 0.360 0.80
American black 0.054 0.040 0.008 0.098 0.20
Total 0.406 0.104 0.032 0.458 1.00

This table specifies, for example, that the probability is 0.352 that a person selected
at random is both Caucasian and blood group A.

(a) Are the events “blood group A” and “Caucasian race” statistically independent?

(b) Are the events “blood group A” and “Caucasian race” mutually exclusive?

(c) Assuming statistical independence, what is the expected probability of the event
“blood group A and Caucasian race”?

(d) What is the conditional probability of “blood group A” given that the race is
Caucasian?
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4.11 The distribution of the Rh factor in a Caucasian population is as follows:

4.12

4.13

Rh Positive (Rh*, Rht) ‘ Rh Positive (Rht, Rh™) ‘ Rh Negative

0.35 | 0.48 o7

Rh™ subjects have two Rh™ genes, while Rh™ subjects have two Rh™ genes or one

Rh* gene and one Rh™ gene. A potential problem occurs when a Rh™ male mates with
an Rh™ female.

(a)

(b)

(c)

Assuming random mating with respect to the Rh factor, what is the probability
of an Rh™ female mating with an Rh™ male?

Since each person contributes one gene to an offspring, what is the probability of
Rh incompatibility given such a mating? (Incompatibility occurs when the fetus
is Rh™ and the mother is Rh™.)

What is the probability of incompatibility in a population of such matings?

The following data for 20- to 25-year-old white males list four primary causes of death
together with a catchall fifth category, and the probability of death within five years:

(a)
(b)

(c)

(d

Cause Probability
Suicide 0.00126
Homicide 0.00063
Auto accident 0.00581
Leukemia 0.00023

All other causes 0.00788

What is the probability of a white male aged 20 to 25 years dying from any cause
of death? Which rule did you use to determine this?

Out of 10,000 white males in the 20 to 25 age group, how many deaths would
you expect in the next five years? How many for each cause?

Suppose that an insurance company sells insurance to 10,000 white male drivers in
the 20 to 25 age bracket. Suppose also that each driver is insured for $100,000 for
accidental death. What annual rate would the insurance company have to charge
to break even? (Assume a fatal accident rate of 0.00581.) List some reasons why
your estimate will be too low or too high.

Given that a white male aged 20 to 25 years has died, what is the most likely
cause of death? Assume nothing else is known. Can you explain your state-
ment?

IfY ~ N (0,1), find

(a)
(b)
(c)
)
()

PLY =< 2]

PlY = —1]

P[Y > 1.645]

P04 <Y <1]

PlY < —196 0or Y > 1.96] = P[|Y| = 1.96]
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4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

IfY ~ N (2,4), find

(@) P[Y <2]

(b) P[Y <0]

(c) P[1<Y <3]

(d) P[0.66 <Y <2.54]

From the paper by Winkelstein et al. [1975], glucose data for the 45 to 49 age group
of California Nisei as presented by percentile are:

Percentile ‘ 99 8 70 60 50 40 30 20 10

Glucose (mg/100 mL) ‘ 218 193 176 161 148 138 128 116 104

(a) Plot these data on normal probability paper connecting the data points by straight
lines. Do the data seem normal?

(b) Estimate the mean and standard deviation from the plot.
(c) Calculate the median and the interquartile range.

In a sample of size 1000 from a normal distribution, the sample mean ¥ was 15, and
the sample variance s> was 100.

(a) How many values do you expect to find between 5 and 45?
(b) How many values less than 5 or greater than 45 do you expect to find?

Plot the data of Table 3.8 on probability paper. Do you think that age at death for
these SIDS cases is normally distributed? Can you think of an a priori reason why
this variable, age at death, is not likely to be normally distributed? Also make a QQ
plot.

Plot the aflatoxin data of Section 3.2 on normal probability paper by graphing the
cumulative proportions against the individual ordered values. Ignoring the last two
points on the graph, draw a straight line through the remaining points and estimate
the median. On the basis of the graph, would you consider the last three points in the
data set outliers? Do you expect the arithmetic mean to be larger or smaller than the
median? Why?

Plot the data of Table 3.12 (number of boys per family of eight children) on normal
probability paper. Consider the endpoints of the intervals to be 0.5, 1.5, ..., 8.5. What
is your conclusion about the normality of this variable? Estimate the mean and the
standard deviation from the graph and compare it with the calculated values of 4.12
and 1.44, respectively.

The random variable Y has a normal distribution with mean 1.0 and variance 9.0.

Samples of size 9 are taken and the sample means, Y, are calculated.

(a) What is the sampling distribution of Y?
(b) Calculate P[1 <Y < 2.85].
(¢) Let W =4Y. What is the sampling distribution of W?

The sample mean and standard deviation of a set of temperature observations are 6.1°F
and 3.0°F, respectively.
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(a) What will be the sample mean and standard deviation of the observations ex-
pressed in °C?

(b) Suppose that the original observations are distributed with population mean ©°F
and standard deviation o °F. Suppose also that the sample mean of 6.1°F is based
on 25 observations. What is the approximate sampling distribution of the mean?
What are its parameters?

4.22 The frequency distributions in Figure 3.10 were based on the following eight sets of

frequencies in Table 4.6.

Table 4.6 Sets of Frequencies for Figure 3.10

Graph Number

Y 1 2 3 4 5 6 7 8
—1 1 1 8 1 1 14 28 10
-2 2 2 8 3 5 11 14 24
-3 5 5 8 8 9 9 10 14
—4 10 9 8 11 14 6 8 10
=5 16 15 8 14 11 3 7 9
—6 20 24 8 15 8 2 6 7
-7 16 15 8 14 11 3 5 6
-8 10 9 8 11 14 6 4 4
-9 5 5 8 8 9 9 3 2
—10 2 2 8 3 5 11 2 1
—11 1 1 8 1 1 14 1 1
Total 88 88 88 88 88 88 88 88
as 3.03 3.20 1.78 2.38 1.97 1.36 12.1 5.78
(The numbers are used to label the graph for purposes of this exercise.) Obtain the
probability plots associated with graphs 1 and 6.

4.23 Suppose that the height of male freshmen is normally distributed with mean 69 inches
and standard deviation 3 inches. Suppose also (contrary to fact) that such subjects apply
and are accepted at a college without regard to their physical stature.

(a) What is the probability that a randomly selected (male) freshman is 6 feet 6 inches
(78 inches) or more?

(b) How many such men do you expect to see in a college freshman class of
1000 men?

(c) What is the probability that this class has at least one man who is 78 inches or
more tall?

4.24 A normal distribution (e.g., IQ) has mean p = 100 and standard deviation o = 15.

Give limits within which 95% of the following would lie:

(a) Individual observations
(b) Means of 4 observations
(c) Means of 16 observations
(d) Means of 100 observations

(e) Plot the width of the interval as a function of the sample size. Join the points
with an appropriate freehand line.
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4.25

4.26

4.27

4.28

*4.29

(f) Using the graph constructed for part (e), estimate the width of the 95% interval
for means of 36 observations.

If the standard error is the measure of the precision of a sample mean, how many
observations must be taken to double the precision of a mean of 10 observations?

The duration of gestation in healthy humans is approximately 280 days with a standard
deviation of 10 days.

(a) What proportion of (healthy) pregnant women will be more than one week “over-
due”? Two weeks?

(b) The gestation periods for a set of four women suffering from a particular con-
dition are 240, 250, 265, and 280 days. Is this evidence that a shorter gestation
period is associated with the condition?

(c) Is the sample variance consistent with the population variance of 10> = 100? (We
assume normality.)

(d) In view of part (c), do you want to reconsider the answer to part (b)? Why or
why not?

The mean height of adult men is approximately 69 inches; the mean height of adult
women is approximately 65 inches. The variance of height for both is 47 inches.
Assume that husband-wife pairs occur without relation to height, and that heights
are approximately normally distributed.

(a) What is the sampling distribution of the mean height of a couple? What are its
parameters? (The variance of two statistically independent variables is the sum
of the variances.)

(b) What proportion of couples is expected to have a mean height that exceeds
70 inches?

(c) In a collection of 200 couples, how many average heights would be expected to
exceed 70 inches?

*(d) In what proportion of couples do you expect the wife to be taller than the hus-
band?

A pharmaceutical firm claims that a new analgesic drug relieves mild pain under stan-
dard conditions for 3 hours, with a standard deviation 1 hour. Sixteen patients are
tested under the same conditions and have an average pain relief time of 2.5 hours.
The hypothesis that the population mean of this sample is actually 3 hours is to be
tested against the hypothesis that the population mean is in fact less than 3 hours;
a =0.05.

(a) What is an appropriate test?
(b) Set up the appropriate critical region.
(c) State your conclusion.

(d) Suppose that the sample size is doubled. State precisely how the region where
the null hypothesis is not rejected is changed.

For Y, from a normal distribution with mean p and variance o2, the variance of Y, based
on n observations, is o2/n. It can be shown that the sample median ¥ in this situation
has a variance of approximately 1.5702/n. Assume that the standard error of ¥ equal
to the standard error of Y is desired, based on n = 10; 20, 50, and 100 observations.
Calculate the corresponding sample sizes needed for the median.
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*4.30 To determine the strength of a digitalis preparation, a continuous intrajugular perfusion
of a tincture is made and the dose required to kill an animal is observed. The lethal
dose varies from animal to animal such that its logarithm is normally distributed. One
cubic centimeter of the tincture kills 10% of all animals, 2 cm? kills 75%. Determine
the mean and standard deviation of the distribution of the logarithm of the lethal

4.31

4.32

4.33

dose.

There were 48 SIDS cases in King County, Washington, during the years 1974 and
1975. The birthweights (in grams) of these 48 cases were:

(a)
(b)

(c)

(@)

(e)

2466 3941 2807 3118 2098 3175 3515
3317 3742 3062 3033 2353 2013 3515
3260 2892 1616 4423 3572 2750 2807
2807 3005 3374 2722 2495 3459 3374
1984 2495 3062 3005 2608 2353 4394
3232 2013 2551 2977 3118 2637 1503
2438 2722 2863 2013 3232 2863

Calculate the sample mean and standard deviation for this set.

Construct a 95% confidence interval for the population mean birthweight assum-
ing that the population standard deviation is 800 g. Does this confidence interval
include the mean birthweight of 3300 g for normal children?

Calculate the p-value of the sample mean observed, assuming that the population
mean is 3300 g and the population standard deviation is 800 g. Do the results of
this part and part (b) agree?

Is the sample standard deviation consistent with a population standard deviation
of 800? Carry out a hypothesis test comparing the sample variance with popula-
tion variance (800)2. The critical values for a chi-square variable with 47 degrees
of freedom are as follows:

Xoops =29.96,  x2gys = 67.82

Set up a 95% confidence interval for the population standard deviation. Do this
by first constructing a 95% confidence interval for the population variance and
then taking square roots.

In a sample of 100 patients who had been hospitalized recently, the average cost
of hospitalization was $5000, the median cost was $4000, and the modal cost was

$2500.

(a) What was the total cost of hospitalization for all 100 patients? Which statistic did
you use? Why?

(b) List one practical use for each of the three statistics.

(c) Considering the ordering of the values of the statistics, what can you say about the

distribution of the raw data? Will it be skewed or symmetric? If skewed, which
way will the skewness be?

For Example 4.8, as discussed in Section 4.6.2:

(a)
(b)
(c)

Calculate the probability of a Type II error and the power if « is fixed at 0.05.
Calculate the power associated with a one-tailed test.
What is the price paid for the increased power in part (b)?
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4.34 The theory of hypothesis testing can be used to determine statistical characteristics of
laboratory tests, keeping in mind the provision mentioned in connection with Example
4.6. Suppose that albumin has a normal (Gaussian) distribution in a healthy popu-
lation with mean u = 3.75 mg per 100 mL and ¢ = 0.50 mg per 100 mL. The
normal range of values will be defined as u 4+ 1.960, so that values outside these
limits will be classified as “abnormal.” Patients with advanced chronic liver disease
have reduced albumin levels; suppose that the mean for patients from this population
is 2.5 mg per 100 mL and the standard deviation is the same as that of the normal
population.

(a) What are the critical values for the rejection region? (Here we work with an
individual patient, n = 1.)

(b) What proportion of patients with advanced chronic liver disease (ACLD) will
have “normal” albumin test levels?

(c) What is the probability that a patient with ACLD will be classified correctly on
a test of albumin level?

(d) Give an interpretation of Type I error, Type II error, and power for this example.

(e) Suppose we consider only low albumin levels to be “abnormal.” We want the
same Type I error as above. What is the critical value now?

(f) In part (e), what is the associated power?
4.35 This problem illustrates the power of probability theory.

(a) Two SIDS infants are selected at random from a population of SIDS infants.
We note their birthweights. What is the probability that both birthweights are
(1) below the population median; (2) above the population median; (3) straddle
the population median? The last interval is a nonparametric confidence inter-
val.

(b) Do the same as in part (a) for four SIDS infants. Do you see the pattern?

(c) How many infants are needed to have interval 3 in part (a) have probability greater
than 0.95?
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CHAPTERS

One- and Two-Sample Inference

5.1 INTRODUCTION

In Chapter 4 we laid the groundwork for statistical inference. The following steps were involved:

. Define the population of interest.
. Specity the parameter(s) of interest.
. Take a random sample from the population.

W N -

. Make statistical inferences about the parameter(s): (a) estimation; and (b) hypothesis
testing.

A good deal of “behind-the-scenes” work was necessary, such as specifying what is meant
by a random sample, but you will recognize that the four steps above summarize the process.
In this chapter we (1) formalize the inferential process by defining pivotal quantities and their
uses (Section 5.2); (2) consider normal distributions for which both the mean and variance are
unknown, which will involve the use of the famous Student z-distribution (Sections 5.3 and
5.4); (3) extend the inferential process to a comparison of two normal populations, including
comparison of the variances (Sections 5.5 to 5.7); and (4) finally begin to answer the question
frequently asked of statisticians: “How many observations should I take?” (Section 5.9).

5.2 PIVOTAL VARIABLES

In Chapter 4, confidence intervals and tests of hypotheses were introduced in a somewhat ad
hoc fashion as inference procedures about population parameters. To be able to make infer-
ences, we needed the sampling distributions of the statistics that estimated the parameters. To
make inferences about the mean of a normal distribution (with variance known), we needed to
know that the sample mean of a random sample was normally distributed; to make inferences
about the variance of a normal distribution, we used the chi-square distribution. A pattern also
emerged in the development of estimation and hypothesis testing procedures. We discuss next
the unifying scheme. This will greatly simplify our understanding of the statistical procedures,
so that attention can be focused on the assumptions and appropriateness of such procedures
rather than on understanding the mechanics.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright © 2004 John Wiley & Sons, Inc.
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In Chapter 4, we used basically two quantities in making inferences:

Y — —1s?
7=Vl g 2= DS

o/Jn o2

What are some of their common features?

1. Each of these expressions involves at least a statistic and a parameter for the statistic
estimated: for example, 52 and o2 in the second formula.

2. The distribution of the quantity was tabulated in a standard normal table or chi-square
table.

3. Distribution of the quantity was not dependent on a value of the parameter. Such a
distribution is called a fixed distribution.

4. Both confidence intervals and tests of hypotheses were derived from a probability inequal-
ity involving either Z or x2.

Formally, we define:

Definition 5.1. A pivotal variable is a function of statistic(s) and parameter(s) having the
same fixed distribution (usually tabulated) for all values of the parameter(s).

The quantities Z and x? are pivotal variables. One of the objectives of theoretical statistics
is to develop appropriate pivotal variables for experimental situations that cannot be modeled
adequately by existing variables.

In Table 5.1 are listed eight pivotal variables and their use in statistical inference. In this
chapter we introduce pivotal variables 2, 5, 6, and 8. Pivotal variables 3 and 4 are introduced
in Chapter 6. For each variable, the fixed or tabulated distribution is given as well as the
formula for a 100(1 — )% confidence interval. The corresponding test of hypothesis is obtained
by replacing the statistic(s) by the hypothesized parameter value(s). The table also lists the
assumptions underlying the test. Most of the time, the minimal assumption is that of normality
of the underlying observations, or appeal is made to the central limit theorem.

Pivotal variables are used primarily in inferences based on the normal distribution. They
provide a methodology for estimation and hypothesis testing. The aim of estimation and hypoth-
esis testing is to make probabilistic statements about parameters. For example, confidence
intervals and p-values make statements about parameters that have probabilistic aspects. In
Chapters 6 to 8 we discuss inferences that do not depend as explicitly on pivotal variables;
however, even in these procedures, the methodology associated with pivotal variables is used;
see Figure 5.1.

5.3 WORKING WITH PIVOTAL VARIABLES

We have already introduced the manipulation of pivotal variables in Section 4.7. Table 5.1
summarizes the end result of the manipulations. In this section we again outline the process for
the case of one sample from a normal population with the variance known. We have a random
sample of size n from a normal population with mean y and variance o> (known). We start
with the basic probabilistic inequality

Plzap = Z <721 qpl=1-«a
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Inference About ——\

Mean(s) Variance(s)
One Sample vs. Sample vs. One Sample vs. Sample vs.
Population Sample Population Sample

rd <~ e <~

Variance Variances

known: Variance known; Variances

Large unknown Large unknown

sample sample

N\

Variances Variances

equal unequal
ZM) (%) z®)  i(f6)  Approximate f; 4 2(¥y) F(¥3)
See Note 2

for procedure

PivotalVariable

Figure 5.1 Methodology associated with pivotal variables.

We substitute Z = (Y — p)/ (00/4/n), writing oy to indicate that the population variance is
assumed to be known:

uw
< _ =1-
oo//n ! oz/2j| *

P |:Za/2 =

Solving for y produces a 100(1—a)% confidence interval for u; solving for Y and substituting
a hypothesized value, g, for p produces the nonrejection region for a 100(x)% test of the
hypothesis:

100(1 — a)% confidence interval for u:

[Y + zaj200//n, Y + zi—a/200/+/1]
100(«)% hypothesis test of . = po; reject if Y is not in

(10 + Zaj200/~/n, 1o + 21-a/200/+/n]

Notice again the similarity between the two intervals. These intervals can be written in an
abbreviated form using the fact that z4/2 = —z1-4/2,

- | {1-a/200 21—a /200

v NG

for the confidence intervals and tests of hypothesis, respectively.

To calculate the p-value associated with a test statistic, again use is made of the pivotal
variable. The null hypothesis value of the parameter is used to calculate the probability of the
observed value of the statistic or an observation more extreme. As an illustration, suppose that
a population variance is claimed to be 100(0& = 100) vs. a larger value (ag > 100). From

and po =*
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a random sample of size 11, we are given s> = 220. What is the p-value for this value (or
more extreme)? We use the pivotal quantity (n — 1)s2 /crg, which under the null hypothesis is
chi-square with 10 degrees of freedom.

The one-sided p-value is the probability of a value of s> > 220. Using the pivotal variable,

we get
(11 - 1)(220) 2
Plx?>———""Z|=P[x*>220
[x > 100 [x* =22.0]
where x? has 11 — 1 = 10 degrees of freedom, giving a one-sided p-value of 0.0151.
Additional examples in the use of pivotal variables will occur throughout this and later
chapters. See Note 5.1 for some additional comments on the pivotal variable approach.

5.4 ¢-DISTRIBUTION

For a random sample from a normal distribution with mean p and variance o2 (known), the
quantity Z = (Y — u)/(0/+/n) is a pivotal quantity that has a normal (0,1) distribution. What
if the variance is unknown? Suppose that we replace the variance o2 by its estimate s> and
consider the quantity (Y — u)/(s/+/n). What is its sampling distribution?

This problem was solved by the statistician W. S. Gossett, in 1908, who published the result
under the pseudonym “Student” using the notation

_ Y-

s/

The distribution of this variable is now called Student’s t-distribution. Gossett showed that the
distribution of ¢ was similar to that of the normal distribution, but somewhat more “heavy-tailed”
(see below), and that for each sample size there is a different distribution. The distributions are
indexed by n — 1, the degrees of freedom identical to that of the chi-square distribution. The
t-distribution is symmetrical, and as the degrees of freedom become infinite, the standard normal
distribution is reached.

A picture of the z-distribution for various degrees of freedom, as well as the limiting case of
the normal distribution, is given in Figure 5.2. Note that like the standard normal distribution,
the z-distribution is bell-shaped and symmetrical about zero. The ¢-distribution is heavy-tailed:
The area to the right of a specified positive value is greater than for the normal distribution; in
other words, the ¢-distribution is less “pinched.” This is reasonable; unlike a standard normal
deviate where only the mean (Y) can vary (i and o are fixed), the ¢ statistic can vary with both
Y and s, so that ¢ will vary even if Y is fixed.

Percentiles of the ¢-distribution are denoted by the symbol ¢, o, where v indicates the degrees
of freedom and « the 100«th percentile. This is indicated in Figure 5.3. In Table 5.1, rather than
writing all the subscripts on the ¢ variate, an asterisk is used and explained in the comment part
of the table.

Table A.4 lists the percentiles of the 7-distribution for each degree of freedom to 30, by fives
to 100, and values for 200, 500, and co degrees of freedom. This table lists the ¢-values such that
the percent to the left is as specified by the column heading. For example, for an area of 0.975
(97.5%), the t-value for six degrees of freedom is 2.45. The last row in this column corresponds
to a ¢ with an infinite number of degrees of freedom, and the value of 1.96 is identical to the
corresponding value of Z; that is, P[Z < 1.96] = 0.975. You should verify that the last row
in this table corresponds precisely to the normal distribution values (i.e., oo = Z) and that for
practical purposes, t, and Z are equivalent for n > 30. What are the mean and the variance of
the 7-distribution? The mean will be zero, and the variance is v/(v — 2). In the symbols used in
Chapter 4, E(t) = 0 and Var(t) = v/(v — 2).
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Figure 5.2 Student ¢-distribution with one, four, and oo degrees of freedom.

Y twith v d.f.

N

1o

o

Figure 5.3 Percentiles of the 7-distribution.

v ty

The converse table of percentiles for a given absolute 7-value is given in the Web appendix,
and most statistical software will calculate it. We find that the probability of a t-value greater
than 1 in absolute value for one degree of freedom is 0.500; the corresponding areas for 7,
30, and oo degrees of freedom are 0.351, 0.325, and 0.317, respectively. Thus, at 30 degrees
of freedom, the ¢-distribution is for most practical purposes, indistinguishable from a normal
distribution. The term heavy-tailed can now be made precise: For a specified value (e.g., with
an abscissa value of 1), P[t; > 1] > P[t; > 1] > Pltio = 1] > P[Z > 1].

5.5 ONE-SAMPLE INFERENCE: LOCATION

5.5.1 Estimation and Testing

We begin this section with an example.
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Example 5.1. In Example 4.9 we considered the birthweight in grams of the first 11 SIDS
cases occurring in King Country in 1969. In this example, we consider the birthweights of the
first 15 cases born in 1977. The birthweights for the latter group are

2013 3827 3090 3260 4309 3374 3544 2835
3487 3289 3714 2240 2041 3629 3345

The mean and standard deviation of this sample are 3199.8 g and 663.00 g, respectively. Without
assuming that the population standard deviation is known, can we obtain an interval estimate
for the population mean or test the null hypothesis that the population birthweight average of
SIDS cases is 3300 g (the same as the general population)?

We can now use the 7-distribution. Assuming that birthweights are normally distributed, the
quantity

Y—n
s/v/15

has a z-distribution with 15 — 1 = 14 degrees of freedom.

Using the estimation procedure, the point estimate of the population mean birthweight of
SIDS cases is 3199.8 = 3200 g. A 95% confidence interval can be constructed on the basis of
the ¢-distribution. For a ¢-distribution with 15 — 1 = 14 degrees of freedom, the critical values
are +2.14, that is, P[—2.14 < 114 < 2.14] = 0.95. Using Table 5.1, a 95% confidence interval
is constructed using pivotal variable 5:

2.14)(663.0
3200 + u = 3200 + 366, lower limit : 2834 g, upper limit : 3566 g

Vis

Several comments are in order:

1. This interval includes 3300 g, the average birthweight in the non-SIDS population. If the
analysis had followed a hypothesis-testing procedure, we could not have rejected the null
hypothesis on the basis of a two-tailed test.

2. The standard error, 633.0/+/15, is multiplied by 2.14 rather than the critical value 1.96
using a normal distribution. Thus, the confidence interval is wider by approximately
9%. This is the price paid for our ignorance about the value of the population standard
deviation. Even in this fairly small sample, the price is modest.

5.5.2 t-Tests for Paired Data

A second example of the one-sample ¢-test involves its application to paired data. What are paired
data? Typically, the term refers to repeated or multiple measurements on the same subjects. For
example, we may have a measurement of the level of pain before and after administration of an
analgesic drug. A somewhat different experiment might consider the level of pain in response
to each of two drugs. One of these could be a placebo. The first experiment has the weakness
that there may be a spontaneous reduction in level of pain (e.g., postoperative pain level), and
thus the difference in the responses (after/before) may be made up of two effects: an effect of
the drug as well as the spontaneous reduction. Some experimental design considerations are
discussed further in Chapter 10. The point we want to make with these two examples is that
the basic data consist of pairs, and what we want to look at is the differences within the pairs.
If, in the second example, the treatments are to be compared, a common null hypothesis is
that the effects are the same and therefore the differences in the treatments should be centered
around zero. A natural approach then tests whether the mean of the sample differences could
have come from a population of differences with mean zero. If we assume that the means of the
sample differences are normally distributed, we can apply the z-test (under the null hypothesis),
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BOTH QUR HITTING AND | |50 ou-ALL KNOW WHAT WE | | GET A NEW
STATISTICIAN !!!

QUR FIELOING AVERAGES
WERE DOWN THIS YEAR.. HAVE To DO NEXT SEASON

Cartoon 5.1 PEANUTS. (Reprinted by permission of UFS, Inc.)

Table 5.2 Response of 13 Patients to
Aminophylline Treatment at 16 Hours Compared
with 24 Hours before Treatment (Apneic Episodes

per Hour)

24 h 16 h Before—After
Patient Before After (Difference)
1 1.71 0.13 1.58
2 1.25 0.88 0.37
3 2.13 1.38 0.75
4 1.29 0.13 1.16
5 1.58 0.25 1.33
6 4.00 2.63 1.37
7 1.42 1.38 0.04
8 1.08 0.50 0.58
9 1.83 1.25 0.58
10 0.67 0.75 —0.08
11 1.13 0.00 1.13
12 2.71 2.38 0.33
13 1.96 1.13 0.83
Total 22.76 12.79 9.97
Mean 1.751 0.984 0.767
Variance 0.7316  0.6941 0.2747
Standard deviation  0.855 0.833 0.524

Source: Data from Bednarek and Roloff [1976].

and estimate the variance of the population of differences o2, by the variance of the sample
differences, s2.

Example 5.2. The procedure is illustrated with data from Bednarek and Roloff [1976] deal-
ing with the treatment of apnea (a transient cessation of respiration) using a drug, aminophylline,
in premature infants. The variable of interest, “average number of apneic episodes per hour,”
was measured before and after treatment with the drug. An episode was defined as the absence
of spontaneous breathing for more than 20 seconds or less if associated with bradycardia or
cyanosis.

Patients who had “six or more apneic episodes on each of two consecutive 8 h shifts were
admitted to the study.” For purposes of the study, consider only the difference between the
average number of episodes 24 hours before treatment and 16 hours after. This difference is
given in the fourth column of Table 5.2. The average difference for the 13 patients is 0.767
episode per hour. That is, there is a change from 1.751 episodes per hour before treatment to
0.984 episode per hour at 16 hours after treatment.
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The standard deviation of the differences is s = 0.524. The pivotal quantity to be used is
variable 5 from Table 5.1. The argument is as follows: The basic statement about the pivotal
variable ¢+ with 13 — 1 = 12 degrees of freedom is P[—2.18 < #1p < 2.18] = 0.95 using
Table A.4. The form taken for this example is

ploois< Y =H 18] =005
0.524//13

To set up the region to test some hypothesis, we solve for Y as before. The region then is

Plpu—0317<Y < nu+0.317] = 0.95

What is a “reasonable” value to hypothesize for ©? The usual procedure in this type of situation
is to assume that the treatment has “no effect.” That is, the average difference in the number
of apneic episodes from before to after treatment represents random variation. If there is no
difference in the population average number of episodes before and after treatment, we can
write this as

Hy: n=0

We can now set up the hypothesis-testing region as illustrated in Figures 5.4 and 5.5. Figure 5.4
indicates that the sample space can be partitioned without knowing the observed value of Y.
Figure 5.5 indicates the observed value of ¥ = 0.767 episode per hour; it clearly falls into the
rejection region. Note that the scale has been changed from Figure 5.4 to accommodate the value
observed. Hence the null hypothesis is rejected and it is concluded that the average number of
apneic episodes observed 16 hours after treatment differs significantly from the average number
of apneic episodes observed 24 hours before treatment.

This kind of test is often used when two treatments are applied to the same experimental unit
or when the experimental unit is observed over time and a treatment is administered so that it

0.025 0.025
E m Area = .95 m]] ﬁ
317 Ho: u=0 +317
Reject Do Not Reject Null ‘ Reject
Null Hypothesis Hypothesis Null Hypothesis

Figure 5.4 Partitioning of sample space of Y into two regions: (a) region where the null hypothesis is
not rejected, and (b) region where it is rejected. (Data from Bednarek and Roloff [1976]; see Table 5.2.)

Reject Do not reject Reject
” Y M Y und Y
0317 0 0317 3 ¥
Hy 0.767
value Observed
value of ¥

Figure 5.5 Observed value of Y and location on the sample space. (Data from Bednarek and Roloff
[1976]; see Table 5.2.)
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A

L Y
0 0450 X 1.084 Y
Hy 0.767
value Observed
value of Y

Figure 5.6 A 95% confidence interval for the difference in number of apneic episodes per hour. (Data
from Bednarek and Roloff [1976]; see Table 5.2.)

is meaningful to speak of pretreatment and posttreatment situations. As mentioned before, there
is the possibility that changes, if observed, are in fact due to changes over time and not related
to the treatment.

To construct a confidence interval, we solve the inequality for p so that we get

P[Y —0317 <u <Y 403171 =0.95

Again, this interval can be set up to this point without knowing the value of ¥. The value of Y
is observed to be 0.767 episode per hour, so that the 95% confidence interval becomes

[0.767 — 0.317 < pu < 0.767 + 0.317] or [0.450 < u < 1.084]

This interval is displayed in Figure 5.6. Two things should be noted:

1. The width of the confidence interval is the same as the width of the region where the null
hypothesis is not rejected (cf. Figure 5.5).

2. The 95% confidence interval does not include zero, the null hypothesis value of 1.

5.6 TWO-SAMPLE STATISTICAL INFERENCE: LOCATION

5.6.1 Independent Random Variables

A great deal of research activity involves the comparison of two or more groups. For example,
two cancer therapies may be investigated: one group of patients receives one treatment and a
second group the other. The experimental situation can be thought of in two ways: (1) there
is one population of subjects, and the treatments induce two subpopulations; or (2) we have
two populations that are identical except in their responses to their respective treatments. If the
assignment of treatment is random, the two situations are equivalent.

Before exploring this situation, we need to state a definition and a statistical result:

Definition 5.2. Two random variables Y| and Y, are statistically independent if for all fixed
values of numbers (say, y; and y>),

P[Y1 < y1, Y2 <yl = P[Y1 < »1]P[Y2 < y2]

The notation [Y; < y1, Y2 < y;] means that Y| takes on a value less than or equal to yp,
and Y, takes on a value less than or equal to y,. If we define an event A to have occurred
when Y takes on a value less than or equal to y;, and an event B when Y, takes on a value
less than or equal to yp, Definition 5.2 is equivalent to the statistical independence of events
P[AB] = P[A]P[B] as defined in Chapter 4. So the difference between statistical independence
of random variables and statistical independence of events is that the former in effect describes
a relationship between many events (since the definition has to be true for any set of values of
y1 and y7). A basic result can now be stated:
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Result 5.1. If Y; and Y, are statistically independent random variables, then for any two
constants a; and ap, the random variable W = aY| 4+ apY> has mean and variance

E(W) =a E(Y)) + a2E(Y2)
Var(W) = a}Var(Yy) + a3 Var(Y2)

The only new aspect of this result is that of the variance. In Note 4.10, the expectation of
W was already derived. Before giving an example, we also state:

Result 5.2. If Y; and Y, are statistically independent random variables that are normally
distributed, W = a;Y+ayY; is normally distributed with mean and variance given by Result 5.1.

Example 5.3. Let Y; be normally distributed with mean ©; = 100 and variance 012 = 225;
let Y, be normally distributed with mean u, = 50 and variance 022 = 175. If Y1 and Y, are
statistically independent, W = Y] + Y» is normally distributed with mean 100 + 50 = 150 and
variance 225 + 175 = 400. This and additional examples are given in the following summary:

Y1 ~ N(100, 225), Y» ~ N(50, 175)

w Mean of W Variance of W
i+ 1 150 400
Y i—-1 50 400
2Y 1+ Y, 250 1075
2Y) —2Y, 100 1600

Note that the variance of Y; — Y» is the same as the variance of Y| + Y5; this is because the
coefficient of Y], —1, is squared in the variance formula and (=% = (+1)2 = 1. In words, the
variance of a sum of independent random variables is the same as the variance of a difference
of independent random variables.

Example 5.4. Now we look at an example that is more interesting and indicates the useful-
ness of the two results stated. Heights of females and males are normally distributed with means
162 cm and 178 cm and variances (6.4 cm)? and (7.5 cm)?, respectively. Let Y1 = height of
female; let Y, = height of male. Then we can write

Yy ~ N(162, (6.4)%) and Y, ~ N(178, (1.5)%)

Now consider husband—wife pairs. Suppose (probably somewhat contrary to societal mores) that
husband-wife pairs are formed independent of stature. That is, we interpret this statement to
mean that Y7 and Y, are statistically independent. The question is: On the basis of this model,
what is the probability that the wife is taller than the husband? We formulate the problem as
follows: Construct the new variable W = Y| — Y>. From Result 5.2 it follows that

W ~ N(=16, (6.4)% + (7.5))

Now the question can be translated into a question about W; namely, if the wife is taller than the
husband, Y7 > Y», or Y1 — Y2 > 0, or W > 0. Thus, the question is reformulated as P[W > 0].
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6=9.86

186 0 W=y;-¥2
0 1.62 4

Figure 5.7 Heights of husband-wife pairs.

Hence,
P[W>O]:P|:Z> 0-19 }

V(6.4)% + (7.5)?

. 16
=P|Z>—
|: 9.86]

= P[Z > 1.62]
= 0.053

so that under the model, in 5.3% of husband-wife pairs the wife will be taller than the husband.
Figure 5.7 indicates the area of interest.

5.6.2 Estimation and Testing

The most important application of Result 5.1 involves distribution of the difference of two
sample means. If Y| and Y, are the means from two random samples of size n; and n»,
respectively, and Y] and Y, are normally distributed with means p; and w, and variances 012
and o3, then by Result 5.2,
o o o}
Yi—Yy~N{|pu —p2, —+—=
ny  np
so that _
Y1 =Yy = (1 —p2)

,/Ulz/nl +022/n2

has a standard normal distribution. This, again, is a pivotal variable, number 2 in Table 5.1.
We are now in a position to construct confidence intervals for the quantity p; — @y or to do
hypothesis testing. In many situations, it will be reasonable to assume (null hypothesis) that
M1 = M2, so that w1 — up = 0; although the values of the two parameters are unknown, it is
reasonable for testing purposes to assume that they are equal, and hence, the difference will be
zero. For example, in a study involving two treatments, we could assume that the treatments
were equally effective (or ineffective) and that differences between the treatments should be
centered at zero.

z
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How do we determine whether or not random variables are statistically independent? The
most common way is to note that they are causally independent in the population. That is, the
value of Y for one person does not affect the value for another. As long as the observations
are sampled independently (e.g., by simple random sampling), they will remain statistically
independent. In some situations it is not clear a priori whether variables are independent and
there are statistical procedures for testing this assumption. They are discussed in Chapter 9.
For the present we will assume that the variables we are dealing with are either statistically
independent or if not (as in the case of the paired 7-test discussed in Section 5.5.2), use aspects
of the data that can be considered statistically independent.

Example 5.5. Zelazo et al. [1972] studied the age at which children walked as related to
“walking exercises” given newborn infants. They state that “if a newborn infant is held under
his arms and his bare feet are permitted to touch a flat surface, he will perform well-coordinated
walking movements similar to those of an adult.” This reflex disappears by about eight weeks.
They placed 24 white male infants into one of four “treatment” groups. For purposes of this
example, we consider only two of the four groups: “active exercise group” and “eight-week
control group.” The active group received daily stimulation of the walking reflex for eight weeks.
The control group was tested at the end of the eight-week treatment period, but there was no
intervention. The age at which the child subsequently began to walk was then reported by the
mother. The data and basic calculations are shown in Table 5.3.

For purposes of this example, we assume that the sample standard deviations are, in fact,
population standard deviations, so that Result 5.2 can be applied. In Example 5.6 we reconsider
this example using the two-sample ¢-test. For this example, we have

nyp =6 ny =35
Y1 = 10.125 months Y, = 12.350 months
o1 = 1.4470 months (assumed) oy = 0.9618 month (assumed)

For purposes of this example, the quantity

_ (Y1 —Y2) — (u1 — p2) _ (Y1 —Y2) — (u1 — p2)
V(1.4470)2/6 + (0.9618)2/5 0.7307

has a standard normal distribution and is based on pivotal variable 2 of Table 5.1. Let us first
set up a 95% confidence interval on the difference (11 — @2) in the population means. The 95%
confidence interval is

(Y1 —Y2) £1.96(0.7307)

with
upper limit = (10.125 — 12.350) + 1.4322 = —0.79 month

lower limit = (10.125 — 12.350) — 1.4322 = —3.66 months

The time line is shown in Figure 5.8.

The 95% confidence interval does not straddle zero, so we would conclude that there is a
real difference in age in months when the baby first walked in the exercise group compared to
the control group. The best estimate of the difference is 10.125 — 12.350 = —2.22 months; that
is, the age at first walking is about two months earlier than the control group.

Note the flow of the argument: The babies were a homogeneous group before treatment.
Allocation to the various groups was on a random basis (assumed but not stated explicitly in the
article); the only subsequent differences between the groups were the treatments, so significant
differences between the groups must be attributable to the treatments. (Can you think of some
reservations that you may want checked before accepting the conclusion?)
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Table 5.3 Distribution of Ages (in Months) in Infants
for Walking Alone

Age for Walking Alone

Active Exercise Eight-Week

Group Control Group
9.00 13.25
9.50 11.50
9.75 12.00
10.00 13.50
13.00 11.50
9.50 a

n 6 5

Mean 10.125 12.350

Standard deviation 1.4470 0.9618

Source: Data from Zelazo et al. [1972].
“One observation is missing from the paper.

95% confidence interval

A

4] 3 } = 4| 0
222
observed mean difference

Figure 5.8 Time line for difference in time to infants walking alone.
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Figure 5.9 Plot showing the nonrejection region.

Formulating the problem as a hypothesis-testing problem is done as follows: A reasonable
null hypothesis is that 1 — @y = 0; in this case, the hypothesis of no effect. Comparable to the
95% confidence interval, a test at the 5% level will be carried out. Conveniently, pu; — us =0,
so that the nonrejection region is simply 0+ 1.96(0.7307) or 0 &£ 1.4322. Plotting this on a line,
we get Figure 5.9.

We would reject the null hypothesis, Hp : 11 — o = 0, and accept the alternative hypothesis,
Hy @y # wo; in fact, on the basis of the data, we conclude that ) < us.

To calculate the (one-sided) p-value associated with the difference observed, we again use
the pivotal variable

- - —2.225 —
P[[Y1—Yy] < —2225] =P [z < ﬁ]
= P[Z < -3.05]

= 0.0011
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The p-value is 0.0011, much less than 0.05, and again, we would reject the null hypothesis. To
make the p-value comparable to the two-sided confidence and hypothesis testing procedure, we
must multiply it by 2, to give a p-value

p-value = 2(0.0011) = 0.0022

We conclude this section by considering the two sample location problem when the population
variances are not known. For this we need:

Result 5.3. If Y| and Y, are based on two independent random samples of size n; and
ny from two normal distributions with means w; and @, and the same variances 012 = 022 =
crz, then _ _

Y1 —=Y2) — (u1 — u2)

spa/1/np +1/n

2

has a #-distribution with n + ny — 2 degrees of freedom. Here 5,

is “the pooled estimate of
common variance o“,” as defined below.

This result is summarized by pivotal variable 6 in Table 5.1. Result 5.3 assumes that the
population variances are the same, 012 = 022 = o2, There are then two estimates of o2 : 512
from the first sample and s% from the second sample. How can these estimates be combined to
provide the best possible estimate of 027 If the sample sizes, n and n», differ, the variance
based on the larger sample should be given more weight; the pooled estimate of o2 provides
this. It is defined by

o _ (= Dst - D3

p ny+ny—2

If ny = ny, then slz, = %(s% + s%), just the arithmetic average of the variances. For n; # nj, the
variance with the larger sample size receives more weight. See Note 5.2 for a further discussion.

Example 5.5. (continued) Consider again the data in Table 5.3 on the age at which children
first walk. We will now take the more realistic approach by treating the standard deviations as
sample standard deviations, as they should be.

The pooled estimate of the (assumed) common variance is

5 . (6— 1)(1.4470)2 + (5 — 1)(0.9618)% . 14.1693
A — =

P 6+5-2
sp = 1.2547 months

= 1.5744

A 95% confidence interval for the difference p; — wy is constructed first. From Table A.4, the
critical ¢-value for nine degrees of freedom is #9 0975 = 2.26. The 95% confidence interval is
calculated to be

(10.125 — 12.350) £ (2.26)(1.2547)/1/6 + 1/5 = —=2.225 £ 1.717

lower limit = —3.94 months and upper limit = —0.51 month

Notice that these limits are wider than the limits (—3.66, —0.79) calculated on the assumption
that the variances are known. The wider limits are the price for the additional uncertainty.

The same effect is observed in testing the null hypothesis that @1 — o = 0. The rejection
region (Figure 5.10), using a 5% significance level, is outside

0+ (2.26)(2.2547)/1/6 + 1/5 = 0+ 1.72
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Figure 5.10 Plot showing the rejection region.

The observed value of —2.22 months also falls in the rejection region. Compared to the
regions constructed when the variances were assumed known, the region where the null hypoth-
esis is not rejected in this case is wider.

5.7 TWO-SAMPLE INFERENCE: SCALE

5.7.1 F-Distribution

The final inference procedure to be discussed in this chapter deals with the equality of variances
of two normal populations.

Result 5.4. Given two random samples of size nj and ny, with sample variances sf and
s%, from two normal populations with variances 012 and 022, the variable

2,2
VA

— 2,2
s5/05

has an F-distribution with n; — 1 and ny — 1 degrees of freedom.

The F-distribution (named in honor of Sir R. A. Fisher) does not have a simple mathematical
formula, but most statistical packages can compute tables of the distribution. The F-distribution
is indexed by the degrees of freedom associated with sl2 (the numerator degrees of freedom) and
the degrees of freedom associated with s% (the denominator degrees of freedom). A picture of
the F-distribution is presented in Figure 5.11. The distribution is skewed; the extent of skewness
depends on the degrees of freedom. As both increase, the distribution becomes more symmetric.

0.8t 18&1df.

0.6 4&4df

04r

48&25df

0.2

1 2 3 4 5 6

Figure 5.11 F-distribution for three sets of degrees of freedom.
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We write Fy, 4, ¢ to indicate the 100ath percentile value of an F-statistic with vy and v;
degrees of freedom. The mean of an F-distribution is vy/(v2 — 2), for vy > 2; the variance is
given in Note 5.3. In this note you will also find a brief discussion of the relationship between
the four distributions we have now discussed: normal, chi-square, Student 7, and F.

It is clear that " s

_ 8i/9]

2.2
s5/05

is a pivotal variable, listed as number 8 in Table 5.1. Inferences can be made on the ratio 012 / 022.
[To make inferences about 012 (or 022) by itself, we would use the chi-square distribution and
the procedure outlined in Chapter 4.] Conveniently, if we want to test whether the variances are
equal, that is, 012 = 022, the ratio 012 /022 is equal to 1 and “drops out” of the pivotal variable,
which can then be written s 5
_sylop sy
T 2/52 2
$3/05 83
We would reject the null hypothesis of equality of variances if the observed ratio 512 / 512 is “very
large” or “very small,” how large or small to be determined by the F-distribution.

5.7.2 Testing and Estimation

Continuing Example 5.5, the sample variances in Table 5.3 were 512 = (1.4470)% = 2.0938 and
s% = (0.9618)2 = 0.9251. Associated with slz are 6 — 1 = 5 degrees of freedom, and with s%,
5 — 1 = 4 degrees of freedom. Under the null hypothesis of equality of population variances,
the ratio slz /s% has an F-distribution with (5, 4) degrees of freedom. For a two-tailed test at the
10% level, we need F5 4,005 and Fs 4.0.95. From Table A.7, the value for Fs 4,095 is 6.26. Using
the relationship Fy, vy.0 = 1/Fy, v, 1-«> We oObtain F5 4005 = 1/F450.95 = 0.19. The value of
F observed is Fs 4 = 57 /s3 = 2.0938/0.9251 = 2.26.

From Figure 5.12 it is clear that the null hypothesis of equality of variances is not rejected.
Notice that the rejection region is not symmetric about 1, due to the zero bound on the left-
hand side. It is instructive to consider F'-ratios for which the null hypothesis would have been
rejected. On the right-hand side, F54,095 = 6.26; this implies that sl2 must be 6.26 times as
large as s% before the 10% significance level is reached. On the left-hand side, F5 4,005 = 0.19,
so that 512 must be 0.19 times as small as s% before the 10% significance level is reached. These
are reasonably wide limits (even at the 10% level).

At one time statisticians recommended performing an F-test for equality of variances before
going on to the z-test. This is no longer thought to be useful. In small samples the F-test
cannot reliably detect even quite large differences in variance; in large samples it will reject the
hypothesis of equality of variances for differences that are completely unimportant. In addition,
the F-test is extremely sensitive to the assumption of normality, even in large samples. The
modern solution is to use an approximate version of the #-test that does not assume equal
variances (see Note 5.2). This test can be used in all cases or only in cases where the sample
variances appear substantially different. In large samples it reduces to the Z-test based on pivotal
variable 2 in Table 5.1. The F-test should be restricted to the case where there is a genuine
scientific interest in whether two variances are equal.

do not reject Hy

~ ~

S S i s

observed F = 2.26

A\

o4
-~

o1
0.19

—

6.26

Figure 5.12 Plot showing nonrejection of the null hypothesis of equality of variances.
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A few comments about terminology: Sample variances that are (effectively) the same are
called homogeneous, and those that are not are called heterogeneous. A test for equality of
population variances, then, is a test for homogeneity or heterogeneity. In the more technical
statistical literature, you will find the equivalent terms homoscedasticity and heteroscedasticity
tests.

A confidence interval on the ratios of the population variances 012 /022 can be constructed
using the pivotal variable approach once more. To set up a 100(1 — «)% confidence interval,
we need the 100(c«/2) percentile and 100(1 — «/2) percentile of the F-distribution.

Continuing with Example 5.5, suppose that we want to construct a 90% confidence interval
on 012 /022 on the basis of the observed sample. Values for the 5th and 95th percentiles have
already been obtained: F54,005 = 0.19 and F54095 = 6.26. A 90% confidence interval on

2 2 . .
o /oy is then determined by
2,2 2,2
s1/sy s1/85
Fs5.4095 F54005

2.0938/0.9251 2.0938/0.9251
6.26 ’ 0.19

For the data observed, this is

) = (0.36,11.9)

Thus, on the basis of the data observed, we can be 90% confident that the interval (0.36, 11.9)
straddles or covers the ratio 012 /022 of the population variances. This interval includes 1.0. So,
also on the basis of the estimation procedure, we conclude that 012 /022 = 1 is not unreasonable.

A 90% confidence interval on the ratio of the standard deviations, o1/07, can be obtained
by taking square roots of the points (0.36, 11.9), producing (0.60, 3.45) for the interval.

5.8 SAMPLE-SIZE CALCULATIONS

One of the questions most frequently asked of a statistician is: How big must my n be? Stripped
of its pseudojargon, a valid question is being asked: How many observations are needed in this
study? Unfortunately, the question cannot be answered before additional information is supplied.
We first put the requirements in words in the context of a study comparing two treatments; then
we introduce the appropriate statistical terminology. To determine sample size, you need to
specify or know:

1. How variable the data are

2. The chance that you are willing to tolerate concluding incorrectly that there is an effect
when the treatments are equivalent

3. The magnitude of the effect to be detected
4. The certainty with which you wish to detect the effect

Each of these considerations is clearly relevant. The more variation in the data, the more
observations are needed to pin down a treatment effect; when there is no difference, there
is a chance that a difference will be observed, which due to sampling variability is declared
significant. The more certain you want to be of detecting an effect, the more observations you
will need, everything else remaining equal. Finally, if the difference in the treatments is very
large, a rather economical experiment can be run; conversely, a very small difference in the
treatments will require very large sample sizes to detect.

We now phrase the problem in statistical terms: The model we want to consider involves
two normal populations with equal variances o2, differing at most in their means, ;1 and po.
To determine the sample size, we must specify:
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Figure 5.13 Distributions of the Z-statistic under the null and an alternative hypothesis. The probability
of Z < —1.96 or Z > 1.96 under the null hypothesis (the level) is dark gray. The probability under the
alternative hypothesis (the power) is light gray.

1. o2

2. The probability, «, of a Type I error

3. The magnitude of the difference 1 — py to be detected

4. The power, 1 — B, or equivalently, the probability of a Type II error, 8

Figure 5.13 shows an example of these quantities visually. There are two normal distributions,
corresponding to the distribution of the two-sample Z-statistic under the null hypothesis that
two means are equal and under the alternative hypothesis that the mean of the first sample is
greater than the mean of the second. In the picture, (u; — u2)/(o/+/n) = 3, for example, a
difference in means of p; — up = 3 with a standard deviation ¢ = 10 and a sample size of
n = 100.

The level, or Type I error rate, is the probability of rejecting the null hypothesis if it is true.
We are using a 0.05-level two-sided test. The darkly shaded regions are where Z < —1.96 or
Z > 1.96 if u; = w2, adding up to a probability (area under the curve) of 0.05. The power
is the probability of rejecting the null hypothesis if it is not true. The lightly shaded region is
where Z > 1.96 if the alternative hypothesis is true. In theory there is a second lightly shaded
region where Z < —1.96, but this is invisibly small: There is effectively no chance of rejecting
the null hypothesis “in the wrong direction.” In this example the lightly shaded region adds up
to a probability of 0.85, meaning that we would have 85% power.

Sample sizes are calculated as a function of

= pal
o

A

which is defined to be the standardized distance between the two populations. For a two-sided
test, the formula for the required sample size per group is

2(z1—a2 + 21-p)2
n—= ——~+~——— -~
A2

It is instructive to contemplate this formula. The standardized difference enters as a square.
Thus, to detect a treatment different half as small as perhaps considered initially will require
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four times as many observations per group. Decreasing the probabilities of Type I and Type
II errors has the same effect on the sample size; it increases it. However, the increment is not
as drastic as it is with A. For example, to reduce the probability of a Type I error from 0.05
to 0.025 changes the Z-value from Zpg75 = 1.96 to Zpog7s = 2.24; even though Zj_42 is
squared, the effect will not even be close to doubling the sample size. Finally, the formula
assumes that the difference p; — wy can either be positive or negative. If the direction of
the difference can be specified beforehand, a one-tailed value for Z can be used. This will
result in a reduction of the sample sizes required for each of the groups, since z;_, would
be used.

Example 5.6. At a significance level of 1 — o = 0.95 (one tail) and power 1 — 8 = 0.80,
a difference A = 0.3 is to be detected. The appropriate Z-values are

Zp.95 = 1.645 (a more accurate value than given in Table A.2)

Zogo = 0.84
The sample size required per group is

_2(1.645 4 0.84)*

=137.2

(0.3)2
The value is rounded up to 138, so that at least 138 observations per group are needed to detect
the specified difference at the specified significant level and power.

2 is not known, how can we estimate the sample size needed to

2

Suppose that the variance o
detect a standardized difference A? One possibility is to have an estimate of the variance o
based on a previous study or sample. Unfortunately, no explicit formulas can be given when the
variance is estimated; many statistical texts suggest adding between two and four observations
per group to get a reasonable approximation to the sample size (see below).

Finally, suppose that one group—as in a paired experiment—is to be used to determine
whether a populations mean p differs from a hypothesized mean po. Using the same standardized
difference A = | — pol/o, it can be shown that the appropriate number in the group is

(Z1—aj2 + 21-p)*
n=-————"—
A2

or one-half the number needed in one group in the two-sample case. This is why tables for
sample sizes in the one-sample case tell you, in order to apply the table to the two-sample case,
to (1) double the number in the table, and (2) use that number for each group.

Example 5.7. Consider data involving PKU children. Assume that IQ in the general pop-
ulation has mean p = 100 and standard deviation = 15. Suppose that a sample of eight PKU
children whose diet has been terminated has an average IQ of 94, which is not significantly
different from 100. How large would the sample have to be to detect a difference of six IQ
points (i.e., the population mean is 94)? The question cannot be answered yet. (Before reading
on: What else must be specified?) Additionally, we need to specify the Type I and Type II
errors. Suppose that « = 0.05 and § = 0.10. We make the test one-tailed because the alter-
native hypothesis is that the IQ for PKU children is less than that of children in the general
population. A value of 8 = 0.10 implies that the power is 1 — 8 = 0.90. We first calculate the
standardized distance

A (94 —100] 6

=— =040
15 15
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Then z1_0.05 = 20.95 = 1.645 and z1_¢.10 = z0.90 = 1.28. Hence,

2
_ (1.645 + 1.28) _s3s
(0.40)2

Rounding up, we estimate that it will take a sample of 54 observations to detect a difference of

100 — 94 = 6 1Q points (or greater) with probabilities of Type I and Type II errors as specified.

If the variance is not known, and estimated by s2, say §2 = 152, then statistical tables (not

included in this book) indicate that the sample size is 55, not much higher than the 54 we
calculated. A summary outline for calculating sample sizes is given in Figure 5.14.

Fix «, B.

3 A

One tail Two tails
Zx = 2y e = 21—/

Sampling Situation

3 Y

One population Two populations
Fix A — 1#= ol Fix A — 1417 2l
o o
A 4 y
(2« +Z1~p)2 2z +Zl_/3)2
n= ———-- = ——
A2 A?
{number in sample) (number per sample)

Comments:

1. In the case of two populations, if 0'12 # 022, define o? = (alz + 0-22) /2 and proceed as
before.

2. If o is to be estimated from the data, add to the calculated values the following values
for an approximate sample size:

One population Two populations
| «=005 Add 2 Add 1
One tail { a =001 Add 4 Add 2
. - 0.05 Add 2 Add 1
Two tails { *
wo tatls { a =001 Add 3 Add 2

Figure 5.14 Sample-size calculations for measurement data.
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There is something artificial and circular about all of these calculations. If the difference A
is known, there is no need to perform an experiment to estimate the difference. Calculations
of this type are used primarily to make the researcher aware of the kinds of differences that
can be detected. Often, a calculation of this type will convince a researcher not to carry out
a piece of research, or at least to think very carefully about the possible ways of increasing
precision, perhaps even contemplating a radically different attack on the problem. In addition,
the size of a sample may be limited by considerations such as cost, recruitment rate, or time
constraints beyond control of the investigations. In Chapter 6 we consider questions of sample
size for discrete variables.

NOTES
5.1 Inference by Means of Pivotal Variables: Some Comments

1. The problem of finding pivotal variables is a task for statisticians. Part of the problem
is that such variables are not always unique. For example, when working with the normal
distribution, why not use the sample median rather than the sample mean? After all, the median
is admittedly more robust. However, the variance of the sample median is larger than that of
the sample mean, so that a less precise probabilistic statement would result.

2. In many situations there is no exactly pivotal variable available in small samples, although
a pivotal variable can typically be found in large samples.

3. The principal advantage of using the pivotal variable approach is that it gives you a unified
picture of a great number of procedures that you will need.

4. There is a philosophical problem about the interpretation of a confidence interval. For
example, consider the probability inequality

P[-1.96 < Z <1.96] =0.95

which leads to a 95% confidence interval for the mean of a normal population on the basis of
a random sample of size n:

—  1.960 —  1.960
Ply- 22 < <7+ 22| =095
[ N ﬁ]

It is argued that once Y is observed, this interval either covers the mean or not; that is, P is
either 0 or 1. One answer is that probabilities are not associated with a particular event—whether
they have occurred or may occur at some future time—but with a population of events. For this
reason we say dfter the fact that we are 95% confident that the mean is in the interval, not that
the probability is 0.95 that the mean is in the interval.

5. Given two possible values for a parameter, which one will be designated as the null
hypothesis value and which one as the alternative hypothesis value in a hypothesis testing
situation? If nothing else is given, the designation will be arbitrary. Usually, there are at least
four considerations in designating the null value of a parameter:

a. Often, the null value of the parameter permits calculation of a p-value. For example,
if there are two hypotheses, u = o and u # o, only under u = po can we calculate
the probability of an occurrence of the observed value or a more extreme value.

b. Past experience or previous work may suggest a specified value. The new experimen-
tation or treatment then has a purpose: rejection of the value established previously,
or assessment of the magnitude of the change.
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c. Occam’s razor can be appealed to. It states: “Do not multiply hypotheses beyond
necessity,” meaning in this context that we usually start from the value of a parameter
that we would assume if no new data were available or to be produced.

d. Often, the null hypothesis is a “straw man” we hope to reject, for example, that a new
drug has the same effect as a placebo.

6. Sometimes it is argued that the smaller the p-value, the stronger the treatment effect.
You now will recognize that this cannot be asserted baldly. Consider the two-sample z-test. A
p-value associated with this test will depend on the quantities 41 — w2, Sp, 71, and na. Thus,
differences in p-values between two experiments may simply reflect differences in sample size
or differences in background variability (as measured by s,).

5.2 Additional Notes on the t-Test

1. Heterogeneous variances in the two-sample. t-test. Suppose that the assumption of homo-
geneity of variances in the two-sample ¢-test is not tenable. What can be done? At least three
avenues are open:

a. Use an approximation to the ¢ procedure.
b. Transform the data.
c. Use another test, such as a nonparametric test.

With respect to the last point, alternative approaches are discussed in Chapter 8. With respect to
the first point, one possibility is to rank the observations from smallest to largest (disregarding
group membership) and then carry out the z-test on the ranks. This is a surprisingly good fest
but does not allow us to estimate the magnitude of the difference between the two groups.
See Conover and Iman [1981] for an interesting discussion and Thompson [1991] for some
precautions. Another approach adjusts the degrees of freedom of the two-sample ¢-test. The
procedure is as follows: Let Y1 ~ N(u1, 012) and Y> ~ N(u, 022), and samples of size n; and
ny are taken, respectively. The variable

Y1 —Y2) — (11 — p2)

Jor/ni +o3/n

has a standard normal distribution. However, the analogous quantity with the population vari-
ances 012 and 022 replaced by the sample variances sl2 and sg does not have a ¢-distribution. The
problem of finding the distribution of this quantity is known as the Behrens—Fisher problem.
It is of theoretical interest in statistics because there is no exact solution to such an apparently
simple problem. There are, however, perfectly satisfactory practical solutions. One approach
adjusts the degrees of freedom of this statistic in relation to the extent of dissimilarity of
the two sample variances. The 7-table is entered not with ny 4+ np, — 2 degrees of freedom,
but with

(s3/n1 + s3/n2)? .,
(s3/n)?/(y + 1) + (s3/n2)?/(n2 + 1)

degrees of freedom =

This value need not be an integer; if you are working from tables of the ¢-distribution rather
than software, it may be necessary to round down this number. The error in this approximation
is very small and is likely to be negligible compared to the errors caused by nonnormality. For
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large samples (e.g., n1, ny > 30), the statistic
(Y1 —Y2) — (11 — p2)
1/s%/nl +s§/n2

can be treated as a standard normal deviate even if the distribution of Y is not a normal
distribution.

2. The two-sample t-test and design of experiments. Given that a group has to be divided
into two subgroups, the arrangement that minimizes the standard error of the difference is that
of equal sample sizes in each group when there is a common ¢2. To illustrate, suppose that
10 objects are to be partitioned into two groups; consider the multiplier /1/n1 + 1/n, which
determines the relative size of the standard errors.

ny ny /1/np+1/ny

5 5 0.63
6 4 0.65
7 3 0.69
8 2 0.79

This list indicates that small deviations from a 5:5 ratio do not affect the multiplier very
much. It is sometimes claimed that sample sizes must be equal for a valid ¢-test: Except for
giving the smallest standard error of the difference, there is no such constraint.

3. The “wrong” t-test. What is the effect of carrying out a two-sample ¢-test on paired data,
that is, data that should have been analyzed by a paired ¢-test? Usually, the level of significance
is reduced. On the one hand, the degrees of freedom are increased from (n — 1), assuming n
pairs of observations, to 2(n — 1), but at the same time, additional variation is introduced, so
that the standard error of the difference is now larger. In any event the assumption of statistical
independence between “groups” is usually inappropriate.

4. Robustness of the t-test. The t-test tends to be sensitive to outliers, unusually small or
large values of a variable. We discuss other methods of analysis in Chapter 8. As a matter of
routine, you should always graph the data in some way. A simple box plot or histogram will
reveal much about the structure of the data. An outlier may be a perfectly legitimate value and
its influence on the z-test entirely appropriate, but it is still useful to know that this influence is
present.

5.3 Relationships and Characteristics of the Fixed Distributions in This Chapter

We have already suggested some relationships between the fixed distributions. The connection
is more remarkable yet and illustrates the fundamental role of the normal distribution. The basic
connection is between the standard normal and the chi-square distribution. Suppose that we
draw randomly 10 independent values from a standard normal distribution, square each value,
and sum them. This sum is a random variable. What is its sampling distribution? It turns out
to be chi-square with 10 degrees of freedom. Using notation, let Z;, Z3, ... , Zjo be the values
of Z obtained in drawings 1 to 10. Then, Z? 4+ 4 2120 has a chi-square distribution with 10
degrees of freedom: X120 = Z% +-+ le0~ This generalizes the special case X12 =72

The second connection is between the F-distribution and the chi-square distribution. Suppose
that we have two independent chi-square random variables with v; and v, degrees of freedom.
The ratio 5

Xo /1

x5 /v2

V1,02
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has an F-distribution with v; and v, degrees of freedom. Finally, the square of a #-variable with
v degrees of freedom is Fj ,. Summarizing yields

2 zU: 2 2 X12/1
Xy = Z7, t,=F,= >
i=1 Xo/v

A special case connects all four pivotal variables:

Thus, given the F-table, all the other tables can be generated from it. For completeness, we
summarize the mean and variance of the four fixed distributions:

Distribution ~ Symbol Mean Variance
Normal VA 0 1
Student ¢ ty 0 ] v>2)
Chi-square x2 v 2v
v2 203(v +v2—2)

Fisher’s F Fy v, (v > 4)

v -2 v —2)2 —4)

5.4 One-Sided Tests and One-Sided Confidence Intervals

Corresponding to one-sided (one-tailed) tests are one-sided confidence intervals. A one-sided
confidence interval is derived from a pivotal quantity in the same was as a two-sided confidence
interval. For example, in the case of a one-sample ¢-test, a pivotal equation is

X—u
s/v/n

Solving for p produces a 100(1 — a)% upper one-sided confidence interval for u : (x —
fh—1.1—-aS/+/n, 00). Similar intervals can be constructed for all the pivotal variables.

P |:—OO =< = tn—l,l—a] =1l-a

PROBLEMS

5.1 Rickman et al. [1974] made a study of changes in serum cholesterol and triglyceride
levels of subjects following the Stillman diet. The diet consists primarily of protein and
animal fats, restricting carbohydrate intake. The subjects followed the diet with length
of time varying from 3 to 17 days. (Table 5.4). The mean cholesterol level increased
significantly from 215 mg per/100 mL at baseline to 248 mg per/100 mL at the end of
the diet. In this problem, we deal with the triglyceride level.

(a) Make a histogram or stem-and-leaf diagram of the changes in triglyceride levels.

(b) Calculate the average change in triglyceride level. Calculate the standard error of
the difference.

(c) Test the significance of the average change.
(d) Construct a 90% confidence interval on the difference.

(e) The authors indicate that subjects (5,6), (7.8), (9,10), and (15,16) were “repeaters,”
that is, subjects who followed the diet for two sequences. Do you think it is



142

ONE- AND TWO-SAMPLE INFERENCE

Table 5.4 Diet Data for Problem 5.1

Triglyceride
Days on Weight (kg) (mg/100 ml)
Subject Diet Initial Final Baseline Final
1 10 54.6 49.6 159 194
2 11 56.4 52.8 93 122
3 17 58.6 559 130 158
4 4 55.9 54.6 174 154
5 9 60.0 56.7 148 93
6 6 57.3 555 148 90
7 3 62.7 59.6 85 101
8 6 63.6 59.6 180 99
9 4 714 69.1 92 183
10 4 72.7 70.5 89 82
11 4 49.6 47.1 204 100
12 7 78.2 75.0 182 104
13 8 55.9 53.2 110 72
14 7 71.8 68.6 88 108
15 7 71.8 66.8 134 110
16 14 70.5 66.8 84 81

reasonable to include their data the “second time around” with that of the other sub-

jects? Supposing not, how would you now analyze the data? Carry out the analysis.

Does it change your conclusions?

5.2 Indata of Dobson et al. [1976], 36 patients with a confirmed diagnosis of phenylketonuria
(PKU) were identified and placed on dietary therapy before reaching 121 days of age.
The children were tested for IQ (Stanford-Binet test) between the ages of 4 and 6;
subsequently, their normal siblings of closest age were also tested with the Stanford—
Binet. The following are the first 15 pairs listed in the paper:

53

Pair 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IQ of PKU case 89 98 116 67 128 81 96 116 110 90 76 71 100 108 74
1Q of sibling 77 110 94 91 122 94 121 114 88 91 99 93 104 102 82

(a)
(b)
(©
)
(e)

®

State a suitable null and an alternative hypotheses with regard to these data.
Test the null hypothesis.

State your conclusions.

What are your assumptions?

Discuss the concept of power with respect to this set of data using the fact that
PKU invariably led to mental retardation until the cause was found and treatment
comprising a restricted diet was instituted.

The mean difference (PKU case—sibling) in IQ for the full 36 pairs was —5.25; the
standard deviation of the difference was 13.18. Test the hypothesis of no difference
in IQ for this entire set of data.

Data by Mazze et al. [1971] deal with the preoperative and postoperative creatinine
clearance (ml/min) of six patients anesthetized by halothane:
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(a)
(b)
(c)
)
(e)
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Patient

1 2 3 4 5 6

Preoperative 110 101 61 73 143 118
Postoperative 149 105 162 93 143 100

Why is the paired z-test preferable to the two-sample z-test in this case?
Carry out the paired z-test and test the significance of the difference.
What is the model for your analysis?

Set up a 99% confidence interval on the difference.

Graph the data by plotting the pairs of values for each patient.

5.4 Some of the physiological effects of alcohol are well known. A paper by Squires et al.
[1978] assessed the acute effects of alcohol on auditory brainstem potentials in humans.
Six volunteers (including the three authors) participated in the study. The latency (delay)
in response to an auditory stimulus was measured before and after an intoxicating dose of
alcohol. Seven different peak responses were identified. In this exercise, we discuss only
latency peak 3. Measurements of the latency of peak (in milliseconds after the stimulus
onset) in the six subjects were as follows:

(a)
(b)
(c)
)
(e)
®

Latency of Peak

1 2 3 4 5 6

Before alcohol 3.85 3.81 3.60 3.68 378 3.83
After alcohol 382 395 380 387 388 394

Test the significance of the difference at the 0.05 level.

Calculate the p-value associated with the result observed.

Is your p-value based on a one- or two-tailed test? Why?

As in Problem 5.3, graph these data and state your conclusion.

Carry out an (incorrect) two-sample test and state your conclusions.

Using the sample variances sl2 and sg associated with the set of readings observed
before and after, calculate the variance of the difference, assuming independence
(call this variance 1). How does this value compare with the variance of the
difference calculated in part (a)? (Call this variance 2.) Why do you suppose
variance 1 is so much bigger than variance 2? The average of the differences
is the same as the difference in the averages. Show this. Hence, the two-sample
t-test differed from the paired ¢-test only in the divisor. Which of the two tests in
more powerful in this case, that is, declares a difference significant when in fact
there is one?

5.5 The following data from Schechter et al. [1973] deal with sodium chloride preference
as related to hypertension. Two groups, 12 normal and 10 hypertensive subjects, were
isolated for a week and compared with respect to Na™ intake. The following are the
average daily Na™ intakes (in milligrams):

Normal 102 22 00 26 0.0 43.1 458 636 1.8 0.0 3.7 00

Hypertensive 92.8 54.8 51.6 61.7 250.8 84.5 347 622 11.0 39.1
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(a) Compare the average daily Na™ intake of the hypertensive subjects with that of the
normal volunteers by means of an appropriate ¢-test.

(b) State your assumptions.

(c) Assuming that the population variances are not homogeneous, carry out an appro-
priate ¢-test (see Note 5.2).

Kapitulnik et al. [1976] compared the metabolism of a drug, zoxazolamine, in placentas
from 13 women who smoked during pregnancy and 11 who did not. The purpose of
the study was to investigate the presence of the drug as a possible proxy for the rate at
which benzo[a]pyrene (a by-product of cigarette smoke) is metabolized. The following
data were obtained in the measurement of zoxazolamine hydroxylase production (nmol
3H,0 formed/g per hour):

Nonsmoker 0.18 0.36 0.24 0.50 0.42 0.36 0.50 0.60 0.56 0.36  0.68

Smoker 0.66 0.60 0.96 1.37 1.51 3.56 3.36 4.86 7.50 9.00 10.08 14.76 16.50

(a) Calculate the sample mean and standard deviation for each group.

(b) Test the assumption that the two sample variances came from a population with
the same variance.

(¢) Carry out the t-test using the approximation to the z-procedure discussed in
Note 5.2. What are your conclusions?

(d) Suppose we agree that the variability (as measured by the standard deviations)
is proportional to the level of the response. Statistical theory then suggests that
the logarithms of the responses should have roughly the same variability. Take
logarithms of the data and test, once more, the homogeneity of the variances.

Sometime you may be asked to do a two-sample ¢-test knowing only the mean, standard
deviation, and sample sizes. A paper by Holtzman et al. [1975] dealing with terminating
a phenylalanine-restricted diet in 4-year-old children with phenylketonuria (PKU) illus-
trates the problem. The purpose of the diet is to reduce the phenylalanine level. A high
level is associated with mental retardation. After obtaining informed consent, eligible
children of 4 years of age were randomly divided into two groups. Children in one group
had their restricted diet terminated while children in the other group were continued on
the restricted diet. At 6 years of age, the phenylalanine levels were tested in all children
and the following data reported:

Diet Terminated Diet Continued

Number of children 5 4
Mean phenylalanine level (mg/dl) 26.9 16.7
Standard deviation 4.1 7.3

(a) State a reasonable null hypothesis and alternative hypothesis.

(b) Calculate the pooled estimate of the variance slz,.

(c) Test the null hypothesis of part (a). Is your test one-tailed, or two? Why?

(d) Test the hypothesis that the sample variances came from two populations with the
same variance.

(e) Construct a 95% confidence interval on the difference in the population phenylala-
nine levels.
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Interpret the interval constructed in part (e).

“This set of data has little power,” someone says. What does this statement mean?
Interpret the implications of a Type II error in this example.

What is the interpretation of a Type I error in this example? Which, in your opinion,
is more serious in this example: a Type I error or a Type II error?

On the basis of these data, what would you recommend to a parent with a 4-year-old
PKU child?

Can you think of some additional information that would make the analysis more
precise?

Several population studies have demonstrated an inverse correlation of sudden infant
death syndrome (SIDS) rate with birthweight. The occurrence of SIDS in one of a
pair of twins provides an opportunity to test the hypothesis that birthweight is a major
determinant of SIDS. The data shown in Table 5.5 consist of the birthweights (in grams)
of each of 22 dizygous twins and each of 19 monozygous twins.

(a)

(b)
(c)

With respect to the dizygous twins, test the hypothesis given above. State the null
hypothesis.

Make a similar test on the monozygous twins.
Discuss your conclusions.

Table 5.5 Birthweight Data for Problem 5.8

Dizygous Twins Monozygous Twins
SID Non-SID SID Non-SID
1474 2098 1701 1956
3657 3119 2580 2438
3005 3515 2750 2807
2041 2126 1956 1843
2325 2211 1871 2041
2296 2750 2296 2183
3430 3402 2268 2495
3515 3232 2070 1673
1956 1701 1786 1843
2098 2410 3175 3572
3204 2892 2495 2778
2381 2608 1956 1588
2892 2693 2296 2183
2920 3232 3232 2778
3005 3005 1446 2268
2268 2325 1559 1304
3260 3686 2835 2892
3260 2778 2495 2353
2155 2552 1559 2466
2835 2693
2466 1899
3232 3714

Source: D. R. Peterson, Department of Epidemiology,
University of Washington.
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A pharmaceutical firm claims that a new analgesic drug relieves mild pain under standard
conditions for 3 hours with a standard deviation of 1 hour. Sixteen patients are tested
under the same conditions and have an average pain relief of 2.5 hours. The hypothesis
that the population mean of this sample is also 3 hours is to be tested against the
hypothesis that the population mean is in fact less than 3 hours; o« = 0.5.

(a) What is an appropriate test?
(b) Set up the appropriate critical region.
(c) State your conclusion.

(d) Suppose that the sample size is doubled. State precisely how the nonrejection region
for the null hypothesis is changed.

Consider Problem 3.9, dealing with the treatment of essential hypertension. Compare
treatments A and B by means of an appropriate 7-test. Set up a 99% confidence interval
on the reduction of blood pressure under treatment B as compared to treatment A.

During July and August 1976, a large number of Legionnaires attending a convention died
of mysterious and unknown cause. Epidemiologists talked of “an outbreak of Legion-
naires’ disease.” One possible cause was thought to be toxins: nickel, in particular. Chen
et al. [1977] examined the nickel levels in the lungs of nine of the cases, and selected
nine controls. All specimens were coded by the Centers for Disease Control in Atlanta
before being examined by the investigators. The data are as follows (g per 100 g dry
weight):
Legionnaire cases 65 24 52 86 120 82 399 87 139

Control cases 12 10 31 6 5 5 29 9 12
Note that there was no attempt to match cases and controls.

(a) State a suitable null hypothesis and test it.

(b) We now know that Legionnaires’ disease is caused by a bacterium, genus
Legionella, of which there are several species. How would you explain the “signifi-
cant” results obtained in part (a)? (Chen et al. [1977] consider various explanations
also.)

Review Note 5.3. Generate a few values for the normal, 7, and chi-square tables from
the F-table.

It is claimed that a new drug treatment can substantially reduce blood pressure. For
purposes of this exercise, assume that only diastolic blood pressure is considered. A
certain population of hypertensive patients has a mean blood pressure of 96 mmHg.
The standard deviation of diastolic blood pressure (variability from subject to subject)
is 12 mmHg. To be biologically meaningful, the new drug treatment should lower the
blood pressure to at least 90 mmHg. A random sample of patients from the hypertensive
population will be treated with the new drug.

(a) Assuming that « = 0.05 and B = 0.05, calculate the sample size required to
demonstrate the effect specified.

(b) Considering the labile nature of blood pressure, it might be argued that any “treat-
ment effect” will merely be a “put-on-study effect.” So the experiment is redesigned
to consider two random samples from the hypertensive population, one of which
will receive the new treatment, and the other, a placebo. Assuming the same spec-
ifications as above, what is the required sample size per group?
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5.15

(c) Blood pressure readings are notoriously variable. Suppose that a subject’s diastolic
blood pressure varies randomly from measurement period to measurement period
with a standard deviation of 4 mmHg. Assuming that measurement variability is
independent of subject-to-subject variability, what is the overall variance or the
total variability in the population? Recalculate the sample sizes for the situation
described in parts (a) and (b).

(d) Suppose that the change in blood pressure from baseline is used. Suppose that the
standard deviation of the change is 6 mmHg. How will this change the sample
sizes of parts (a) and (b)?

In a paper in the New England Journal of Medicine, Rodeheffer et al. [1983] assessed
the effect of a medication, nifedipine, on the number of painful attacks in patients with
Raynaud’s phenomenon. This phenomenon causes severe digital pain and functional
disability, particularly in patients with underlying connective tissue disease. The drug
causes “vascular smooth-muscle relaxation and relief of arterial vasospasm.” In this study,
15 patients were selected and randomly assigned to one of two treatment sequences:
placebo-nifedipine, or nifedipine—placebo. The data in Table 5.6 were obtained.

(a) Why were patients randomly assigned to one of the two sequences? What are the
advantages?

(b) The data of interest are in the columns marked “placebo” and “nifedipine.” State
a suitable null hypothesis and alternative hypothesis for these data. Justify your
choices. Test the significance of the difference in total number of attacks in two
weeks on placebo with that of treatment. Use a t-test on the differences in the
response. Calculate the p-value.

(c) Construct a 95% confidence interval for the difference. State your conclusions.

(d) Make a scatter plot of the placebo response (x-axis) vs. the nifedipine response
(y-axis). If there was no significant difference between the treatments, about what
line should the observations be scattered?

(e) Suppose that a statistician considers only the placebo readings and calculates a 95%
confidence interval on the population mean. Similarly, the statistician calculates a
95% confidence interval on the nifedipine mean. A graph is made to see if the
intervals overlap. Do this for these data. Compare your results with that of part (c).
Is there a contradiction? Explain.

(f) One way to get rid of outliers is to carry out the following procedure: Take the
differences of the data in columns 7 (placebo) and 9 (nifedipine), and rank them
disregarding the signs of the differences. Put the sign of the difference on the rank.
Now, carry out a paired ¢-test on the signed ranks. What would be an appropriate
null hypothesis? What would be an appropriate alternative hypothesis? Name one
advantage and one disadvantage of this procedure. (It is one form of a nonparametric
test discussed in detail in Chapter 8.)

Rush et al. [1973] reported the design of a randomized controlled trial of nutritional
supplementation in pregnancy. The trial was to be conducted in a poor American black
population. The variable of interest was the birthweight of infants born to study par-
ticipants; study design called for the random allocation of participants to one of three
treatment groups. The authors then state: “The required size of the treatment groups was
calculated from the following statistics: the standard deviation of birthweight ... is of
the order of 500 g. An increment of 120 g in birthweight was arbitrarily taken to consti-
tute a biologically meaningful gain. Given an expected difference between subjects and
controls of 120 g, the required sample size for each group, in order to have a 5% risk of
falsely rejecting, and a 20% risk of falsely accepting the null hypothesis, is about 320.”
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(a) What are the values for o and B?
(b) What is the estimate of A, the standardized difference?

(¢) The wording in the paper suggests that sample size calculations are based on a
two-sample test. Is the test one-tailed or two?

(d) Using a one-tailed test, verify that the sample size per group is n = 215. The
number 320 reflects adjustments for losses and, perhaps, “multiple comparisons”
since there are three groups (see Chapter 12).

5.16 This problem deals with the data of Problem 5.14. In column 4 of Table 5.6, patients are
divided into those with a history of digital ulcers and those without. We want to compare
these two groups. There are seven patients with a history and eight without.

(a) Consider the total number of attacks (in column 9) on the active drug. Carry out a
two-sample ¢-test. Compare the group with a digital ulcer history with the group
without this history. State your assumptions and conclusions.

(b) Rank all the observations in column 9, then separate the ranks into the two groups
defined in part (a). Now carry out a two-sample ¢-test on the ranks. Compare your
conclusions with those of part (b). Name an advantage to this approach. Name a
disadvantage to this approach.

(¢) We now do the following: Take the difference between the “placebo” and “nifedip-
ine” columns and repeat the procedures of parts (a) and (b). Supposing that the
conclusions of part (a) are not the same as those in this part, how would you
interpret such discrepancies?

(d) The test carried out in part (c) is often called a test for interaction. Why do you
suppose that this is so?
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CHAPTERG6

Counting Data

6.1 INTRODUCTION

From previous chapters, recall the basic ideas of statistics. Descriptive statistics present data,
usually in summary form. Appropriate models describe data concisely. The model parameters
are estimated from the data. Standard errors and confidence intervals quantify the preci-
sion of estimates. Scientific hypotheses may be tested. A formal hypothesis test involves four
things: (1) planning an experiment, or recognizing an opportunity, to collect appropriate data;
(2) selecting a significance level and critical region; (3) collecting the data; and (4) rejecting the
null hypothesis being tested if the value of the test statistic falls into the critical region. A less
formal approach is to compute the p-value, a measure of how plausibly the data agree with the
null hypothesis under study. The remainder of this book shows you how to apply these concepts
in different situations, starting with the most basic of all data: counts.

Throughout recorded history people have been able to count. The word statistics comes
from the Latin word for “state”; early statistics were counts used for the purposes of the state.
Censuses were conducted for military and taxation purposes. Modern statistics is often dated
from the 1662 comments on the Bills of Mortality in London. The Bills of Mortality counted
the number of deaths due to each cause. John Graunt [1662] noticed patterns of regularity in
the Bills of Mortality (see Section 3.3.1). Such vital statistics are important today for assessing
the public health. In this chapter we return to the origin of statistics by dealing with data that
arise by counting the number of occurrences of some event.

Count data lead to many different models. The following sections present examples of count
data. The different types of count data will each be presented in three steps. First, you learn
to recognize count data that fit a particular model. (This is the diagnosis phase.) Second, you
examine the model to be used. (You learn about the illness.) Third, you learn the methods of
analyzing data using the model. (At this stage you learn how to treat the disease.)

6.2 BINOMIAL RANDOM VARIABLES

6.2.1 Recognizing Binomial Random Variables

Four conditions characterize binomial data:

1. A response or trait takes on one and only one of two possibilities. Such a response is
called a binary response. Examples are:

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
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In a survey of the health system, people are asked whether or not they have hospital-
ization insurance.

b. Blood samples are tested for the presence or absence of an antigen.

c. Rats fed a potential carcinogen are examined for tumors.

d. People are classified as having or not having cleft lip.

e. Injection of a compound does or does not cause cardiac arrhythmia in dogs.
f.

2. The response is observed a known number of times. Each observation of the response is
sometimes called a Bernoulli trial. In condition 1(a) the number of trials is the number of
people questioned. In 1(b), each blood sample is a trial. Each newborn child constitutes
a trial in 1(f).

3. The chance, or probability, that a particular outcome occurs is the same for each trial.
In a survey such as 1(a), people are sampled at random from the population. Since each
person has the same chance of being interviewed, the probability that the person has
hospitalization insurance is the same in each case. In a laboratory receiving blood samples,
the samples could be considered to have the same probability of having an antigen if the
samples arise from members of a population who submit tests when “randomly” seeking
medical care. The samples would not have the same probability if batches of samples
arrive from different environments: for example, from schoolchildren, a military base,
and a retirement home.

Newborn children are classified as having or not having Down syndrome.

4. The outcome of one trial must not be influenced by the outcome of other trials. Using
the terminology of Chapter 5, the trials outcomes are independent random variables. In
1(b), the trials would not be independent if there was contamination between separate
blood samples. The newborn children of 1(f) might be considered independent trials for
the occurrence of Down syndrome if each child has different parents. If multiple births
are in the data set, the assumption of independence would not be appropriate.

We illustrate and reinforce these ideas by examples that may be modeled by the binomial
distribution.

Example 6.1. Weber et al. [1976] studied the irritating effects of cigarette smoke. Sixty
subjects sat, in groups of five to six, in a 30-m? climatic chamber. Tobacco smoke was produced
by a smoking machine. After 10 cigarettes had been smoked, 47 of the 60 subjects reported that
they wished to leave the room.

Let us consider the appropriateness of the binomial model for these data. Condition 1 is
satisfied. Each subject was to report whether or not he or she desired to leave the room. The
answer gives one of two possibilities: yes or no. Sixty trials are observed to take place (i.e.,
condition 2 is satisfied).

The third condition requires that each subject have the same probability of “wishing to
leave the room.” The paper does not explain how the subjects were selected. Perhaps the
authors advertised for volunteers. In this case, the subjects might be considered “represen-
tative” of a larger population who would volunteer. The probability would be the unknown
probability that a person selected at random from this larger population would wish to leave
the room.

As we will see below, the binomial model is often used to make inferences about the unknown
probability of an outcome in the “true population.” Many would say that an experiment such as
this shows that cigarette smoke irritates people. The extension from the ill-defined population
of this experiment to humankind in general does not rest on this experiment. It must be based
on other formal or informal evidence that humans do have much in common; in particular, one
would need to assume that if one portion of humankind is irritated by cigarette smoke, so will
other segments. Do you think such inferences are reasonable?
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The fourth condition needed is that the trials are independent variables. The authors report
in detail that the room was cleared of all smoke between uses of the climatic chamber. There
should not be a carryover effect here. Recall that subjects were tested in groups of five or
six. How do you think that one person’s response would be changed if another person were
coughing? Rubbing the eyes? Complaining? It seems possible that condition 4 is not fulfilled;
that is, it seems possible that the responses were not independent.

In summary, a binomial model might be used for these data, but with some reservation. The
overwhelming majority of data collected on human populations is collected under less than ideal
conditions; a subjective evaluation of the worth of an experiment often enters in.

Example 6.2. Karlowski et al. [1975] reported on a controlled clinical trial of the use of
ascorbic acid (vitamin C) for the common cold. Placebo and vitamin C were randomly assigned
to the subjects; the experiment was to be a double-blind trial. It turned out that some subjects
were testing their capsules and claimed to know the medication. Of 64 subjects who tested the
capsule and guessed at the treatment, 55 were correct. Could such a split arise by chance if
testing did not help one to guess correctly?

One thinks of using a binomial model for these data since there is a binary response (correct
or incorrect guess) observed on a known number of people. Assuming that people tested only
their own capsules, the guesses should be statistically independent. Finally, if the guesses are “at
random,” each subject should have the same probability—one-half—of making a correct guess
since half the participants receive vitamin C and half a placebo. This binomial model would
lead to a test of the hypothesis that the probability of a correct guess was 1/2.

Example 6.3. Bucher et al. [1976] studied the occurrence of hemolytic disease in newborns
resulting from ABO incompatibility between the parents. Parents are said to be incompatible
if the father has antigens that the mother lacks. This provides the opportunity for production
of maternal antibodies from fetal-maternal stimulation. Low-weight immune antibodies that
cross the placental barrier apparently cause the disease [Cavalli-Sforza and Bodmer, 1999]. The
authors reviewed 7464 consecutive infants born at North Carolina Hospital. Of 3584 “black
births,” 43 had ABO hemolytic disease. What can be said about the true probability that a black
birth has ABO hemolytic disease?

It seems reasonable to consider the number of ABO hemolytic disease cases to be binomial.
The presence of disease among the 3584 trials should be independent (assuming that no parents
had more than one birth during the period of case recruitment—October 1965 to March 1973—
and little or no effect from kinship of parents). The births may conceptually be thought of as a
sample of the population of “potential” black births during the given time period at the hospital.

6.2.2 Binomial Model

In speaking about a Bernoulli trial, without reference to a particular example, it is customary
to label one outcome as a “success” and the other outcome as a “failure.” The mathematical
model for the binomial distribution depends on two parameters: n, the number of trials, and 7,
the probability of a success in one trial. A binomial random variable, say Y, is the count of the
number of successes in the n trials. Of course, Y can only take on the values 0, 1,2, ... ,n.
If 7, the probability of a success, is large (close to 1), then Y, the number of successes, will
tend to be large. Conversely, if the probability of success is small (near zero), ¥ will tend to be
small.

To do statistical analysis with binomial variables, we need the probability distribution of Y.
Let k be an integer between 0 and n inclusive. We need to know P[Y = k]. In other words,
we want the probability of k successes in n independent trials when m is the probability of
success. The symbol b(k; n, w) will be used to denote this probability. The answer involves

the binomial coefficient. The binomial coefficient is the number of different ways that

n
k



154 COUNTING DATA

k objects may be selected from n objects. (Problem 6.24 helps you to derive the value of
n
k
So 6! =1x2x3x4x5x6=720.0!, zero factorial, is defined to be 1. With this notation
the binomial coefficient may be written

.) For each positive integer n, n factorial (written n!) is defined to be 1 x 2 x --- X n.

k)T -kl —kn—k—1)---1 M

(n) n! nn—1.--k+1)

Example 6.4. This is illustrated with the following two cases:

1. Of 10 residents, three are to be chosen to cover a hospital service on a holiday. In how
many ways may the residents be chosen? The answer is

10\ 10! _1><2><3><4><5><6><7><8><9><10_120
3 )7 71317 (I1x2x3x4x5x6xT(1x2x3)

2. Of eight consecutive patients, four are to be assigned to drug A and four to drug B. In
how many ways may the assignments be made? Think of the eight positions as eight
objects; we need to choose four for the drug A patients. The answer is

8 _ 8! _ 1 x2x3x4x5x6x7x38 —70
4 )7 44T Ix2x3xD(Ax2x3x4)
The binomial probability, b(k; n, ), may be written
bk:n, ) = ( Z )nk(l — )k 2)

Example 6.5. Ten patients are treated surgically. For each person there is a 70% chance
of successful surgery (i.e., # = 0.7). What is the probability of only five or fewer successful
surgeries?

P[five or fewer successful cases] = P[five successful cases] + P[four successful cases]
+ P[three successful cases] + P[two successful cases]
+ P[one successful case] + P[no successful case]
= b(5;10,0.7) + b(4; 10,0.7) + b(3; 10, 0.7) + b(2; 10, 0.7)
+b(1; 10,0.7) + b(0; 10, 0.7)
= 0.1029 + 0.0368 + 0.0090 + 0.0014 + 0.0001 + 0.0000
=0.1502

(Note: The actual value is 0.1503; the answer 0.1502 is due to round-off error.)

The binomial probabilities may be calculated directly or found by a computer program. The
mean and variance of a binomial random variable with parameters 7 and n are given by

EY)=nn
3)

var(Y) = nn(1 — )
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From equation (3) it follows that Y /n has the expected value m:

E ({) =7 “
n

In other words, the proportion of successes in n binomial trials is an unbiased estimate of the
probability of success.

6.2.3 Hypothesis Testing for Binomial Variables

The hypothesis-testing framework established in Chapter 4 may be used for the binomial dis-
tribution. There is one minor complication. The binomial random variable can take on only a
finite number of values. Because of this, it may not be possible to find hypothesis tests such
that the significance level is precisely some fixed value. If this is the case, we construct regions
so that the significance level is close to the desired significance level.

In most situations involving the binomial distribution, the number of trials (n) is known. We
consider statistical tests about the true value of m. Let p = Y/n. If m is hypothesized to be
70, an observed value of p close to o reinforces the hypothesis; a value of p differing greatly
from mp makes the hypothesis seem unlikely.

Procedure 1. To construct a significance test of Hy: m = mo against Hq: m # mp, at
significance level a:

1. Find the smallest ¢ such that P [|p — mg| > ¢] < « when Hj is true.

2. Compute the actual significance level of the test; the actual significance level is P[|p —
7ol = c].

3. Observe p, call it p; reject Hy if |p — mo| > c.

The quantity ¢ is used to determine the critical value (see Definition 4.19); that is, determine
the bounds of the rejection region, which will be mp £ ¢. Equivalently, working in the Y scale,
the region is defined by nmy =+ nc.

Example 6.6. For n = 10, we want to construct a test of the null hypothesis Hy: 7 = 0.4
vs. the alternative hypothesis Hy: mw # 0.4. Thus, we want a two-sided test. The significance
level is to be as close to a = 0.05 as possible. We work in the ¥ = np scale. Under Hy, Y has
mean nt = (10)(0.4) = 4. We want to find a value C such that P[|Y — 4| > C] is as close
to @ = 0.05 (and less than «) as possible. The quantity C is the distance Y is from the null
hypothesis value 4. Using the definition of the binomial distribution, we construct Table 6.1.

The closest a-value to 0.05 is « = 0.0183; the next value is 0.1012. Hence we choose C = 4;
we reject the null hypothesis Hy: nm =4 if Y =0 or Y > 8; equivalently, if p =0or p > 0.8,
or in the original formulation, if |p — 0.4| > 0.4 since C = 10c.

Table 6.1 C-Values for Example 6.6

C 4-C C+4 PlY -4 >Cl=«a
6 - 10 0.0001 = P[Y = 10]

5 - 9  0.0017 = P[Y > 9]

4 0 8  0.0183 = P[Y = 0] + P[Y > 8]
3 1 7 0.1012=P[Y < 1]+ P[Y > 7]
2 2 6  0.3335=P[Y <2]+ P[Y > 6]
1 3 5 0.7492 = P[Y < 3]+ P[Y > 5]




156 COUNTING DATA
Procedure 2. To find the p-value for testing the hypothesis Hy: m = o vs. Hj: w # mo:

1. Observe p : p is now fixed, where p = y/n.
2. Let p be a binomial random variable with parameters n and 7y. The p-value is P[|p —
ol > |p — moll.

Example 6.7. Find the p-value for testing w = 0.5 if n = 10 and we observe that p =
0.2.|p — 05| = |0.2 — 05| = 0.3 only if p = 0.0,0.1,0.2,0.8,0.9, or 1.0. The p-value
can be computed by software or by adding up the probabilities of the “more extreme” values:
0.0010 4 0.0098 4 0.0439 4 0.0439 + 0.0098 + 0.0010 = 0.1094. Tables for this calculation are
provided in the Web appendix. The appropriate one-sided hypothesis test and calculation of a
one-sided p-value is given in Problem 6.25.

6.2.4 Confidence Intervals

Confidence intervals for a binomial proportion can be found by computer or by looking up
the confidence limits in a table. Such tables are not included in this book, but are available in
any standard handbook of statistical tables, for example, Odeh et al. [1977], Owen [1962], and
Beyer [1968].

6.2.5 Large-Sample Hypothesis Testing

The central limit theorem holds for binomial random variables. If Y is binomial with parameters

n and 7, then for “large n,”
Y—-EY) Y-nxm

varY)  Jar(—7)

has approximately the same probability distribution as an N (0, 1) random variable. Equivalently,
since Y = np, the quantity (p — 7)//m(1 — m)/n approaches a normal distribution. We will
work interchangeably in the p scale or the Y scale. For large n, hypothesis tests and confidence
intervals may be formed by using critical values of the standard normal distribution.

The closer 7 is to 1/2, the better the normal approximation will be. If n < 50, it is preferable
to use tables for the binomial distribution and hypothesis tests as outlined above. A reasonable
rule of thumb is that n is “large” if n7(1 — ) > 10.

In using the central limit theorem, we are approximating the distribution of a discrete random
variable by the continuous normal distribution. The approximation can be improved by using a
continuity correction. The normal random variable with continuity correction is given by

Y —nm—1/2 £y 12
— ifY —nw >
Jnr(l —m)

Y —nm .
Y—nr+1/2
— fY—nw <—-1/2
Jnr(l —m) /

For nm(1 — ) > 100, or quite large, the factor of 1/2 is usually ignored.

Procedure 3. Let Y be binomial n, 7, with a large n. A hypothesis test of Hy: 7 = mp vs.
Hy: m # mo at significance level « is given by computing Z,. with & = mg. The null hypothesis
is rejected if |Z:| > z1_a/2.
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Example 6.8. In Example 6.2, of the 64 persons who tested their capsules, 55 guessed the
treatment correctly. Could so many people have guessed the correct treatment “by chance”? In
Example 6.2 we saw that chance guessing would correspond to p = 1/2. At a 5% significance
level, is it plausible that mg = 1/2?

As nmo(1 — mp) = 64 x 1/2 x 1/2 = 16, a large-sample approximation is reasonable.
y —nmy =55—64 x 1/2 =23, so that

Y —nmp—1/2 225
T Vnmo(l—my)  J6AX112x1)2

=5.625

As |Z.| =5.625 > 1.96 = z0.975, the null hypothesis that the correct guessing occurs purely by
chance must be rejected.

Procedure 4. The large-sample two-sided p-value for testing Hy: w = mg vs. Ha: w # 1o
is given by 2(1 — ®(|Z.|)). ©(x) is the probability that an N (0, 1) random variable is less than
x. |Z.| is the absolute value of Z,.

6.2.6 Large-Sample Confidence Intervals

Procedure 5. For large n, say np(I—p) > 10, an approximate 100(1 —a)% confidence interval

for 7 is given by
—~ [PA—=D) p(1—Dp)
(P—Zl—a/z % D+ 21—« % (@)

where p = y/n is the observed proportion of successes.

Example 6.9. Find a 95% confidence interval for the true fraction of black children having
ABO hemolytic disease in the population represented by the data of Example 6.3. Using formula
(5) the confidence interval is

43 43 -
L 1 g6, [43/3584)(1 — 43/3584)
3584 3584

(0.0084, 0.0156)

6.3 COMPARING TWO PROPORTIONS

Often, one is not interested in only one proportion but wants to compare two proportions. A
health services researcher may want to see whether one of two races has a higher percentage of
prenatal care. A clinician may wish to discover which of two drugs has a higher proportion of
cures. An epidemiologist may be interested in discovering whether women on oral contraceptives
have a higher incidence of thrombophlebitis than those not on oral contraceptives. In this section
we consider the statistical methods appropriate for comparing two proportions.

6.3.1 Fisher’s Exact Test

Data to estimate two different proportions will arise from observations on two populations. Call
the two sets of observations sample 1 and sample 2. Often, the data are presented in 2 x 2
(verbally, “two by two”) tables as follows:

Success  Failure

Sample 1 nii ni2
Sample 2 nai nn»
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The first sample has n11 successes in nj; + nj2 trials; the second sample has ny; successes
in ny| + nyp trials. Often, the null hypothesis of interest is that the probability of success in the
two populations is the same. Fisher’s exact test is a test of this hypothesis for small samples.

The test uses the row and column totals. Let n;. denote summation over the second index;
that is, ny. = ny| + nyo. Similarly define n,., n.1, and n.;. Let n.. denote summation over both
indices; that is, n.. = n11 +n12+n21 +no. Writing the table with row and column totals gives:

Success  Failure

Sample 1 ni nia ni.
Sample 2 nai npo nj.
n.| n.n n..

Suppose that the probabilities of success in the two populations are the same. Suppose further
that we are given the row and column totals but not nyy, n12, na1, and ny;. What is the probability
distribution of n;?

Consider the n.. trials as n.. objects; for example, n;. purple balls and n,. gold balls. Since
each trial has the same probability of success, any subset of n.; trials (balls) has the same
probability of being chosen as any other. Thus, the probability that n1; has the value k is the
same as the probability that there are k purple balls among 7.1 balls chosen without replacement
from an urn with n;. purple balls and nj. gold balls. The probability distribution of ny; is called
the hypergeometric distribution.

The mathematical form of the hypergeometric probability distribution is derived in Prob-
lem 6.26.

Example 6.10. Kennedy et al. [1981] consider patients who have undergone coronary artery
bypass graft surgery (CABG). CABG takes a saphenous vein from the leg and connects the vein
to the aorta, where blood is pumped from the heart, and to a coronary artery, an artery that
supplies the heart muscle with blood. The vein is placed beyond a narrowing, or stenosis, in the
coronary artery. If the artery would close at the narrowing, the heart muscle would still receive
blood. There is, however, some risk to this open heart surgery. Among patients with moderate
narrowing (50 to 74%) of the left main coronary artery emergency cases have a high surgical
mortality rate. The question is whether emergency cases have a surgical mortality different from
that of nonemergency cases. The in-hospital mortality figures for emergency surgery and other
surgery were:

Discharge Status

Surgical Priority Dead Alive
Emergency 1 19
Other 7 369

From the hypergeometric distribution, the probability of an observation this extreme is
0.3419 = P[ny; = 1] = Plnyy = 1]+ -+ + P[n;; = 8]. (Values for n.. this large are
not tabulated and need to be computed directly.) These data do not show any difference beyond
that expected by chance.

Example 6.11. Sudden infant death syndrome (SIDS), or crib death, results in the unex-
plained death of approximately two of every 1000 infants during their first year of life. To study
the genetic component of such deaths, Peterson et al. [1980] examined sets of twins with at least
one SIDS child. If there is a large genetic component, the probability of both twins dying will
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be larger for identical twin sets than for fraternal twin sets. If there is no genetic component,
but only an environmental component, the probabilities should be the same. The following table
gives the data:

SIDS Children

Type of Twin One Both
Monozygous (identical) 23 1
Dizygous (fraternal) 35 2

The Fisher’s exact test one-sided p-value for testing that the probability is higher for
monozygous twins is p = 0.784. Thus, there is no evidence for a genetic component in
these data.

6.3.2 Large-Sample Tests and Confidence Intervals

As mentioned above, in many situations one wishes to compare proportions as estimated by
samples from two populations to see if the true population parameters might be equal or if one
is larger than the other. Examples of such situations are a drug and placebo trial comparing the
percentage of patients experiencing pain relief; the percentage of rats developing tumors under
diets involving different doses of a food additive; and an epidemiologic study comparing the
percentage of infants suffering from malnutrition in two countries.

Suppose that the first binomial variable (the sample from the first population) is of size n
with probability 1, estimated by the sample proportion p;. The second sample estimates > by
p> from a sample of size nj.

It is natural to compare the proportions by the difference p; — p;. The mean and variance
are given by

E(p1 — p2) =m — 12,
m(l —m) + (1l — o)

var(p; — p2) =
ni ns

A version of the central limit theorem shows that for large n1 and ny [say, both nim(1 — 1)
and nomy (1 — mp) greater than 10],

p1— p2— (M — m2) _
Vpi(I = p)/nyr+ p2(T— p2)/na

is an approximately normal pivotal variable. From this, hypothesis tests and confidence intervals
develop in the usual manner, as illustrated below.

Example 6.12. The paper by Bucher et al. [1976] discussed in Example 6.3 examines racial
differences in the incidence of ABO hemolytic disease by examining records for infants born at
North Carolina Memorial Hospital. In this paper a variety of possible ways of defining hemolytic
disease are considered. Using their class I definition, the samples of black and white infants
have the following proportions with hemolytic disease:

43
3584

17
T 3831

black infants, n; = 3584, D1

white infants, n, = 3831, P2
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It is desired to perform a two-sided test of the hypothesis 71 = m at the o = 0.05 significance
level. The test statistic is

S, (43/3584) — (17/3831) .
~ JI(@3/3584)(1 — 43/3584)]/3584 + [(17/3831)(1 — 17/3831)]/3831

The two-sided p-value is P[|Z| > 3.58] = 0.0003 from Table A.1. As 0.0003 < 0.05, the null
hypothesis of equal rates, w1 = 72, is rejected at the significance level 0.05.

The pivotal variable may also be used to construct a confidence interval for 71 —m,. Algebraic
manipulation shows that the endpoints of a symmetric (about p; — p) confidence interval are

given by
pil —p1)  pa(l —p2)
p1—p2E Zla/Z\/ +
ni ny

For a 95% confidence interval z1_q/2 = 1.96 and the interval for this example is
0.00756 +0.00414 or (0.00342,0.01170)

A second statistic for testing for equality in two proportions is the x2 (chi-square) statistic.
This statistic is considered in more general situations in Chapter 7. Suppose that the data are as
follows:

Sample 1 Sample 2
Success nipr = nii nop2 = np2 ni.
Failure  ni(1 — py) =n21 m(l—p2) =nxn np
ny =n. ny =n.n n..
A statistic for testing Hp: w1 = mp is the X2 statistic with one degree of freedom. It is

calculated by
n..(niiny — nipnoy)?
ni.ny.n.1n.n

X2 =

For technical reasons (Note 6.2) the chi-square distribution with continuity correction, designated
by Xg, is used by some people. The formula for Xg is

1
n..(lniingy — nignat| — 3n..)?
ni.np.n.1n.p

X2 =

c

For the Bucher et al. [1976] data, the values are as follows:

Race
ABO Hemolytic Disease  Black  White Total

Yes 43 17 60
No 3541 3814 7355

Total 3584 3831 7415
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2 _ TA15(43 x 3814 — 17 x 3541)2

60(7355)(3584)(3831)
7415(|4 14 — 17 x 3541| — 7415/2)>
X?z 5(]143 x 38 x 3541] 5/2) 1296
60(7355)(3584)(3831)

These statistics, for large n, have a chi-square (x?2) distribution with one degree of freedom
under the null hypothesis of equal proportions. If the null hypothesis is not true, X* or X 3 will
tend to be large. The null hypothesis is rejected for large values of X or X%. Table A.3 has
x? critical values. The Bucher data have p < 0.001 since the 0.001 critical value is 10.83 and
require rejection of the null hypothesis of equal proportions.

From Note 5.3 we know that X12 = Z2. For this example the value of Z% = 3.58% = 12.82 is
close to the value X> = 13.19. The two values would have been identical (except for rounding)
if we had used in the calculation of Z an estimate of the standard error of +/pg(1/n; + 1/n3),
where p = 60/7415 is the pooled estimate of & under the null hypothesis 71 = mp = 7.

6.3.3 Finding Sample Sizes Needed for Testing the Difference between Proportions

Consider a study planned to test the equality of the proportions 71 and 2. Only studies in which
both populations are sampled the same number of times, n = n| = n,, will be considered here.
There are five quantities that characterize the performance and design of the test:

. 1y, the proportion in the first population.
. 12, the proportion in the second population under the alternative hypothesis.
. n, the number of observations to be obtained from each of the two populations.

W N =

. The significance level o at which the statistical test will be made. « is the probability of
rejecting the null hypothesis when it is true. The null hypothesis is that 71 = 5.

5. The probability, B, of accepting the null hypothesis when it is not true, but the alternative
is true. Here we will have 7| # m, under the alternative hypothesis (;r; and 7> as specified
in quantities 1 and 2 above).

These quantities are interrelated. It is not possible to change one of them without changing at
least one of the others. The actual determination of sample size is usually an iterative process; the
usual state of affairs is that the desire for precision and the practicality of obtaining an appropriate
sample size are in conflict. In practice, one usually considers various possible combinations and
arrives at a “reasonable” sample size or decides that it is not possible to perform an adequate
experiment within the constraints involved.

The “classical” approach is to specify 71, m» (for the alternative hypothesis), «, and . These
parameters determine the sample size n. Table A.8 gives some sample sizes for such binomial
studies using one-sided hypothesis tests (see Problem 6.27). An approximation for n is

2

Zl—a + 21— 1
n=2[71 e ﬂ\/—[m(l—m)-l-ﬂz(l—ﬂz)]
T — T 2

where @ = 1 — ®(z1_y); that is, z1_o is the value such that a N (0, 1) variable Z has P[Z >
Z21-o] = a. In words, z1—4 is the one-sided normal « critical value. Similarly, z;_g is the
one-sided normal § critical value.

Figure 6.1 is a flow diagram for calculating sample sizes for discrete (binomial) as well
as continuous variables. It illustrates that the format is the same for both: first, values of «
and B are selected. A one- or two-sided test determines zj—4 or zj—4s2 and the
quantity NUM, respectively. For discrete data, the quantities w1 and m, are specified, and
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ONE-SIDED TEST TWOQO-SIDED TEST
Select ¢ and B

y 1 y

Nm =2y, + 2Ly g

Y
A

NUM = Zl—a/}! +Z1~,8

A

CONTINUOUS SCRETE (BINARY
Type of data? DISCRETE (BIARY
A 23 2
Specify gy — pa, Specify m, m
h 4
Calculate L Calculate
A=uy ~ /o T A=|m - m|/o

\ [5]
ONE SAMPLE num\ 2 | TWO SAMPLES
Calculate n =2 (—)
A
Y h 4
n/2 = number in sample n = number per sample

Figure 6.1 Flowchart for sample-size calculations (continuous and discrete variables).
Values of Z. for various values of ¢ are:
c ‘ 0.500 0.800 0.900 0.950 0.975 0.990 0.995

Z. | 0.000 0.842 1.282 1.645 1960 2326 2.576

If one sample, @ and m, are null hypothesis values.
If 02 /=02, calculate 02 = L (02 + o).

o= \/% (m (1 =mp) +m(1 — m)).

Sample size for discrete case is an approximation. For an improved estimate, use n* = n + 2/A.

Note: Two sample case, unequal sample sizes. Let n; and kn; be the required sample sizes. Calculate
n as before. Then calculate n; = n(k + 1)/2k and n, = kny. (Total sample size will be larger.) If also,
0'12 /:(722 calculate n using o7; then calculate ny = (n/2)[1 + af/(kalz)] and ny = kny.

A = | —n2|/\/%(m (1 — m) + m2(1 — m2)) is calculated. This corresponds to the standardized
differences A = |u; — u2|/o associated with normal or continuous data. The quantity n =
2(NUM/A)? then produces the sample size needed for a two-sample procedure. For a one-
sample procedure, the sample size is n/2. Hence a two-sample procedure requires a total of four
times the number of observations of the one-sample procedure. Various refinements are available



COMPARING TWO PROPORTIONS 163

in Figure 6.1. A list of the most common Z-values is provided. If a one-sample test is wanted,
the values of ©y and 7, can be considered the null hypothesis values. Finally, the equation for
the sample size in the discrete case is an approximation, and a more precise estimate, n*, can
be obtained from 5
*
n=n-+ A
This formula is reasonably accurate.

Other approaches are possible. For example, one might specify the largest feasible sample
size n, o, w1, and 7, and then determine the power 1 — §. Figure 6.2 relates 71, A = mp — 7y,
and n for two-sided tests for « = 0.05 and 8 = 0.10.

Finally, we note that in certain situations where sample size is necessarily limited, for
example, a rare cancer site with several competing therapies, trials with « = 0.10 and g = 0.50
have been run.

n=number of observations per group
3= P, -P, = difference to be detected
.60 T

50 \ .05((2 sided)____|

Y] \ B=.10
40

"

T3S
1 7 L\eso T
B0t N5 [ -
{7 T i i

£-F

Difference fo be detected, 8

O 10 20 30 40 50 60 .70 80 .90 10
P

Figure 6.2 Sample sizes required for testing two proportions, 71 and 7 with 90% probability of obtaining
a significant result at the 5% (two-sided) level. (From Feigl [1978].)
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In practice, it is difficult to arrive at a sample size. To one unacquainted with statistical ideas,
there is a natural tendency to expect too much from an experiment. In answer to the question,
“What difference would you like to detect?” the novice will often reply, “any difference,” leading
to an infinite sample size!

6.3.4 Relative Risk and the Odds Ratio

In this section we consider studies looking for an association between two binary variables, that
is, variables that take on only two outcomes. For definiteness we speak of the two variables
as disease and exposure, since the following techniques are often used in epidemiologic and
public health studies. In effect we are comparing two proportions (the proportions with disease)
in two populations: those with and without exposure. In this section we consider methods of
summarizing the association.

Suppose that one had a complete enumeration of the population at hand and the true propor-
tions in the population. The probabilities may be presented in a 2 x 2 table:

Disease

Exposure + (Yes) — (No)

+ (Yes) T T2
— (No) 21 T2

where 711 + 712 + 721 + 72 = 1

There are subtleties glossed over here. For example, by disease (for a human population),
does one mean that the person develops the disease at some time before death, has the disease
at a particular point in time, or develops it by some age? This ignores the problems of accurate
diagnosis, a notoriously difficult problem. Similarly, exposure needs to be defined carefully as
to time of exposure, length of exposure, and so on.

What might be a reasonable measure of the effect of exposure? A plausible comparison is
P[disease+ |exposure+] with P[disease+ |exposure—]. In words, it makes sense to compare the
probability of having disease among those exposed with the probability of having the disease
among those not exposed.

Definition 6.1. A standard measure of the strength of the exposure effect is the relative
risk. The relative risk is defined to be

b= Pldisease + |exposure+] w1 /(711 +7w12) w1 (w21 + 722)
P[disease + |exposure—] w21/ (21 + 122) 21 (w1 + 712)

Thus, a relative risk of 5 means that an exposed person is five times as likely to have the
disease. The following tables of proportions or probabilities each has a relative risk of 2:

Disease Disease Disease Disease

Exposure + - + - + - + -

+ 0.50 0.00 0.25 0.25 0.10 0.40 0.00010 0.49990
- 0.25 025 0.125 0375 0.05 0.45 0.0005 0.49995

We see that many patterns may give rise to the same relative risk. This is not surprising, as
one number is being used to summarize four numbers. In particular, information on the amount
of disease and/or exposure is missing.
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Definition 6.2. Given that one has the exposure, the odds (or betting odds) of getting the
disease are
P[disease + |exposure+]

P[disease — |exposure+]

Similarly, one may define the odds of getting the disease given no exposure. Another measure
of the amount of association between the disease and exposure is the odds ratio defined to be

_ Pldisease + |exposure+]/ P[disease — |exposure+]

~ P[disease + |exposure—]/ P[disease — |exposure—]

(/G 4+ m)) /(e /(T + m12))
(a1 /(a1 + 122))/ (22 / (21 + 722))
T2
12721

The odds ratio is also called the cross-product ratio on occasion; this name is suggested by

the following scheme:
KUt 2

1 2

Consider now how much the relative risk and odds ratio may differ by looking at the ratio of

the tWO terms, /O and w,
( 1 ) <Jl : T 2)
w 22 11 1

Suppose that the disease affects a small segment of the population. Then 11 is small com-
pared to w2, so that m2/(mw11 + m12) is approximately equal to 1. Also, p; will be small
compared to w2, so that (o) + mpp) /7oy is approximately 1. Thus, in this case, p/w = 1.
Restating this: If the disease affects a small fraction of the population (in both exposed and
unexposed groups), the odds ratio and the relative risk are approximately equal. For this reason
the odds ratio is often called the approximate relative risk. If the disease affects less than 5%
in each group, the two quantities can be considered approximately equal.

The data for looking at the relative risk or the odds ratio usually arise in one of three ways,
each of which is illustrated below. The numbers observed in each of the four cells will be
denoted as follows:

Disease

Exposure + -

+ niy N2
- nyy ny

As before, a dot will replace a subscript when the entries for that subscript are summed. For
example,
ni- =nip +np

n.o =np+ny

n..=nj +nip+ny +ny
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Pattern 1. (Cross-Sectional Studies: Prospective Studies of a Sample of the Population)
There is a sample of size n.. from the population; both traits (exposure and disease) are measured
on each subject. This is called cross-sectional data when the status of the two traits is measured at
some fixed cross section in time. In this case the expected number in each cell is the expectation:

n..mw n..m»
n..m n..mpn
-

Example 6.13. The following data are from Meyer et al. [1976]. This study collected infor-
mation on all births in 10 Ontario (Canada) teaching hospitals during 1960-1961. A total of
51,490 births was involved, including fetal deaths and neonatal deaths (perinatal mortality). The
paper considers the association of perinatal events and maternal smoking during pregnancy. Data
relating perinatal mortality and smoking are as follows:

Perinatal Mortality

Maternal Smoking Yes No Total
Yes 619 20,443 21,062
No 634 26,682 27,316
Total 1,253 47,125 48,378

Estimation of the relative risk and odds ratio is discussed below.

Pattern 2. (Prospective Study: Groups Based on Exposure) In a prospective study of expo-
sure, fixed numbers—say n1. and ny.—of people with and without the exposure are followed.
The endpoints are then noted. In this case the expected number of observations in the cells are:

11 T2
ni. ni. ni.
T+ T2 T+ T2
21 ¥157)
ny na.

. np.
21 + 720 21 + 722

Note that as the sample sizes of the exposure and nonexposure groups are determined by the
experimenter, the data will not allow estimates of the proportion exposed, only the conditional
probability of disease given exposure or nonexposure.

Example 6.14. As an example, consider a paper by Shapiro et al. [1974] in which they state
that “by the end of this [five-year] period, there were 40 deaths in the [screened] study group
of about 31,000 women as compared with 63 such deaths in a comparable group of women.”
Placing this in a 2 x 2 table and considering the screening to be the exposure, the data are:

Breast Cancer Death

On Study (Screened)  Yes No Total
Yes 40 30,960 31,000
No 63 30,937 31,000

Pattern 3. (Retrospective Studies) The third way of commonly collecting the data is the
retrospective study. Usually, cases and an appropriate control group are identified. (Matched or
paired data are not being discussed here.) In this case, the sizes of the disease and control groups,
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n.1 and n.p, are specified. From such data one cannot estimate the probability of disease but
rather, the probability of being exposed given that a person has the disease and the probability
of exposure given that a person does not have the disease. The expected number of observations
in each cell is

11 12

n.q n.n
T + 21 T2 + 7122

21 22
n.q n.p
T + 21 T2 + 22
n.p n.p

Example 6.15. Kelsey and Hardy [1975] studied the driving of motor vehicles as a risk
factor for acute herniated lumbar intervertebral disk. Their cases were people between the ages
of 20 and 64; the studies were conducted in the New Haven metropolitan area at three hospitals
or in the office of two private radiologists. The cases had low-back x-rays and were interviewed
and given a few simple diagnostic tests. A control group was composed of those with low-back
x-rays who were not classified as surgical probable or possible cases of herniated disk and who
had not had their symptoms for more than one year. The in-patients, cases, and controls, of the
Yale-New Haven hospital were asked if their job involved driving a motor vehicle. The data
were:

Herniated Disk?

Motor Vehicle Job?  Yes (Cases) No (Controls)

Yes 8 1
No 47 26
Total 55 27

Consider a two-way layout of disease and exposure to an agent thought to influence the
disease:

Disease

Exposure + -

+ nip N2
- np;  n

The three types of studies discussed above can be thought of as involving conditions on the
marginal totals indicated in Table 6.2.

Table 6.2 Characterization of Cross-Sectional, Prospective, and Retrospective Studies and
Relationship to Possible Estimation of Relative Risk and Odds Ratio

Totals for: Can One Estimate the:
Type of Study Column Row Relative Risk? Odds Ratio?
Cross-sectional or prospective sample Random Random Yes Yes
Prospective on exposure Random Fixed Yes Yes

Retrospective Fixed Random No Yes
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For example, a prospective study can be thought of as a situation where the totals for
“exposure+” and “exposure—" are fixed by the experimenter, and the column totals will vary
randomly depending on the association between the disease and the exposure.

For each of these three types of table, how might one estimate the relative risk and/or the
odds ratio? From our tables of expected numbers of observations, it is seen that for tables of
types 1 and 2,

E(n)/(E(nyy) + E(ny2)) _ E(ni1)/En;.) _ /(T + m2) _
E(n21)/(E(n21) + E(nn))  EMm21)/E(mz.)  m21/(m21 +722)

Thus, one estimates the relative risk p by replacing the expected value of n; by the observed
value of nyy, etc., giving

nii/ni.

nai/ny.

ﬁ:

For retrospective studies of type 3 it is not possible to estimate p unless the disease is rare, in
which case the estimate of the odds ratio gives a reasonable estimate of the relative risk.
For all three types of tables, one sees that

E(ni)E(m2)  mnmn
E(mp)E(m2)  miem

Therefore, we estimate the odds ratio by

nyng
ni2n2y

~
w =

It is clear from the definition of relative risk that if exposure has no association with the
disease, p = 1. That is, both “exposed” and “nonexposed” have the same probability of disease.
We verify this mathematically, and also that under the null hypothesis of no association, the
odds ratio w is also 1. Under Hy:

Tij =M. 7. for i=1,2 and j=1,2
Thus,
myy /- Ty /7] 117022 .70 1702779
o= = =1 and w= = =1
7'[21/7T2. 712,71.1/7T2. 12721 JT1.7T.TTR.7T .

If p or w are greater than 1, the exposed group has an increased risk of the disease. If p or w are
less than 1, the group not exposed has an increased risk of the disease. Note that an increased
or decreased risk may, or may not, be due to a causal mechanism.

For the three examples above, let us calculate the estimated relative risk and odds ratio where
appropriate. For the smoking and perinatal mortality data,

19/21,062 192 2
p= 615/21,062 = 1.27, ®= 615(26,682) =1.27
634/27,316 634(20,443)

From these data we estimate that smoking during pregnancy is associated with an increased risk
of perinatal mortality that is 1.27 times as large. (Note: We have not concluded that smoking
causes the mortality, only that there is an association.)
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The data relating screening for early detection of breast cancer and five-year breast cancer
mortality gives estimates

40/31,000 .
63/31,000

40(30,937) .
63(30,960)

p= o=
Thus, in this study, screening was associated with a risk of dying of breast cancer within five
years only 0.63 times as great as the risk among those not screened.

In the unmatched case—control study, only w can be estimated:

It is estimated that driving jobs increase the risk of a herniated lumbar intervertebral disk by a
factor of 4.43.

Might there really be no association in the tables above and the estimated p’s and @’s differ
from 1 merely by chance? You may test the hypothesis of no association by using Fisher’s exact
test (for small samples) or the chi-squared test (for large samples).

For the three examples, using the table of x2 critical values with one degree of freedom, we
test the statistical significance of the association by using the chi-square statistic with continuity
correction.

Smoking—perinatal mortality:

X2 — 48,378[|619 x 26,682 — 634 x 20,443| — %(48,378)]2

2 =17.76
21,062(27,316)(1253)(47,125)

From Table A.3, p < 0.001, and there is significant association. (Equivalently, for one degree
of freedom, Z =/ x~ = 4.21 and Table A.3 shows p < 0.0001.)
Breast cancer and screening:

X2 62,000[]40 x 30,937 — 63 x 30,960| — %(62,000)]2

: =471
¢ 31,000(31,000)(103)(61,897)

From the table, 0.01 < p < 0.05 and the association is statistically significant at the 0.05 level.

Motor-vehicle job and herniated disk: X% = 1.21. From the X2 table, p > 0.25, and there is
not a statistical association using only the Yale-New Haven data. In the next section we return
to this data set.

If there is association, what can one say about the accuracy of the estimates? For the first
two examples, where there is a statistically significant association, we turn to the construction
of confidence intervals for w. The procedure is to construct a confidence interval for In w, the
natural log of w, and to “exponentiate” the endpoints to find the confidence interval for . Our
logarithms are natural logarithms, that is, to the base e. Recall e is a number; e = 2.71828. ...

The estimate of Inw is Inw. The standard error of In@ is estimated by

1 1 1 1

ni ni2 nai na;

The estimate is approximately normally distributed; thus, normal critical values are used in
constructing the confidence intervals. A 100(1 — «)% confidence interval for In w is given by

A 1 1 1 1
lnw:l:zl,a/z st — 4 — 4+ —
ni ni nai np

where an N (0, 1) variable has probability /2 of exceeding z1_q/2.
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Upon finding the endpoints of this confidence interval, we exponentiate the values of the
endpoints to find the confidence interval for w. We find a 99% confidence interval for @ with
the smoking and perinatal mortality data. First we construct the confidence interval for In w:

1 1 1 1
In(1.27) £2.576, | — + ——= + —— + —
n(1.27) > 6\/619 + 20,443 * 26,682 * 634

or 0.2390 4 0.1475 or (0.0915, 0.3865). The confidence interval for w is
(0015 03865 _ (1 10, 1.47)

To find a 95% confidence interval for the breast cancer—screening data,

1 1 1
30,960 +’30,937‘+ 63

1
In(0.63) £ 1.96, | —
n(0.63) \/ 07
or —0.4620 £ 0.3966 or (—0.8586, —0.0654). The 95% confidence interval for the odds ratio,
w, is (0.424, 0.937).
The reason for using logarithms in constructing the confidence intervals is that In @ is more
normally distributed than w. The standard error of w may be estimated directly by

SO D T B
D|—+—+—+—
ni ni2 nai na;

(see Note 6.2 for the rationale). However, confidence intervals should be constructed as illus-
trated above.

6.3.5 Combination of 2 x 2 Tables

In this section we consider methods of combining 2 x 2 tables. The tables arise in one of two
ways. In the first situation, we are interested in investigating an association between disease
and exposure. There is, however, a third variable taking a finite number of values. We wish
to “adjust” for the effect of the third variable. The values of the “confounding” third variable
sometimes arise by taking a continuous variable and grouping by intervals; thus, the values are
sometimes called strata. A second situation in which we will deal with several 2 x 2 tables is
when the study of association and disease is made in more than one group. In some reasonable
way, one would like to consider the combination of the 2 x 2 tables from each group.

Why Combine 2 x 2 Tables?

To see why one needs to worry about such things, suppose that there are two strata. In our first
example there is no association between exposure and disease in each stratum, but if we ignore
strata and “pool” our data (i.e., add it all together), an association appears. For stratum 1,

Disease

E N - 5(100)

r - w=———=
xposure 1 10050)

+ 5 50

— 10 100
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and for stratum 2,

Disease

Exposure + -
+ 40 60

- 40 60

o~

(1)2 = =
40(60)

40(60) _

171

In both tables the odds ratio is 1 and there is no association. Combining tables, the combined

table and its odds ratio are:

Disease

Exposure +

+ 45

— 50

110
160

45(160) .
@combined = m =

When combining tables with no association, or odds ratios of 1, the combination may show
association. For example, one would expect to find a positive relationship between breast cancer
and being a homemaker. Possibly tables given separately for each gender would not show such
an association. If the inference to be derived were that homemaking might be related causally
to breast cancer, it is clear that one would need to adjust for gender.

On the other hand, there can be an association within each stratum that disappears in the
pooled data set. The following numbers illustrate this:

Stratum 1:
Disease
Exposure + -
+ 60 100
— 10 50
Stratum 2:
Disease
Exposure + -
+ 50 10
— 100 60
Combined data:
Disease
Exposure + -
+ 110 110

110 110

_60(50)
a)l = =
10(100)
_50(60)
“2= J00(10)

Wcombined = 1
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Thus, ignoring a confounding variable may “hide” an association that exists within each stratum
but is not observed in the combined data.

Formally, our two situations are the same if we identify the stratum with differing groups.
Also, note that there may be more than one confounding variable, that each strata of the “third”
variable could correspond to a different combination of several other variables.

Questions of Interest in Multiple 2 x 2 Tables

In examining more than one 2 x 2 table, one or more of three questions is usually asked. This
is illustrated by using the data of the study involving cases of acute herniated lumbar disk
and controls (not matched) in Example 6.15, which compares the proportions with jobs driving
motor vehicles. Seven different hospital services are involved, although only one of them was
presented in Example 6.15. Numbering the sources from 1 to 7 and giving the data as 2 x 2
tables, the tables and the seven odds ratios are:

Source 1:
Herniated Disk
Motor Vehicle Job  + - ® =443
+ 8 1
— 47 26
Source 2: Source 5:
+ - + -
T s 0 d=e 1 1 3 =06
- 17 21 - 5 10
Source 3: Source 6:
+ - + -
+ 4 4 =592 + 1 2 ®»=1.83
- 13 77 — 3 11
Source 4: Source 7:
+ - + -
+ 2 10 ®=1.08 + 22 » = 3.08
- 12 65 - 12 37

The seven odds ratios are 4.43, oo, 5.92, 1.08, 0.67, 1.83, and 3.08. The ratios vary so
much that one might wonder whether each hospital service has the same degree of association
(question 1). If they do not have the same degree of association, one might question whether
the controls are appropriate, the patient populations are different, and so on.

One would also like an estimate of the overall or average association (question 2). From the
previous examples it is seen that it might not be wise to sum all the tables and compute the
association based on the pooled tables.

Finally, another question, related to the first two, is whether there is any evidence of any
association, either overall or in some of the groups (question 3).

Two Approaches to Estimating an Overall Odds Ratio

If the seven different tables come from populations with the same odds ratio, how do we estimate
the common or overall odds ratio? We will consider two approaches.



COMPARING TWO PROPORTIONS 173

The first technique is to work with the natural logarithm, log to the base e, of the estimated
odds ratio, @. Let a; = In®;, where @; is the estimated odds ratio in the ith of k 2 x 2 tables.
The standard error of ; is estimated by

1 1 1 1
Si=,/—+—+—+ —
ni ni2 nai n»

where ny1,n12, n21, and ny; are the values from the ith 2 x 2 table. How do we investigate
the problems mentioned above? To do this, one needs to understand a little of how the X2
distribution arises. The square of a standard normal variable has a chi-square distribution with
one degree of freedom. If independent chi-square variables are added, the result is a chi-square
variable whose degrees of freedom comprises the sum of the degrees of freedom of the variables
that were added (see Note 5.3 also).

We now apply this to the problem at hand. Under the null hypothesis of no association in
any of the tables, each a; /s; is approximately a standard normal value. If there is no association,
® =1 and In w = 0. Thus, log @; has a mean of approximately zero. Its square, (a;/s;)?, is
approximately a x2 variable with one degree of freedom. The sum of all k of these independent,
approximately chi-square variables is approximately a chi-square variable with k degrees of

freedom. The sum is .
2
a
X% = —
> (%)

i=1

and under the null hypothesis it has approximately a x >-distribution with k degrees of freedom.
It is possible to partition this sum into two parts. One part tests whether the association
might be the same in all k tables (i.e., it tests for homogeneity). The second part will test to see
whether on the basis of all the tables there is any association.
Suppose that one wants to “average” the association from all of the 2 x 2 tables. It seems
reasonable to give more weight to the better estimates of association; that is, one wants the
estimates with higher variances to get less weight. An appropriate weighted average is

The y2-statistic then is partitioned, or broken down, into two parts:

2 NEANE S —\2 oy —2
U Yo F LR &
i=1 i=1"1 i=1"1

On the right-hand side, the first sum is approximately a x> random variable with k — 1 degrees
of freedom if all k groups have the same degree of association. It tests for the homogeneity of
the association in the different groups. That is, if x2 for homogeneity is too large, we reject
the null hypothesis that the degree of association (whatever it is) is the same in each group.
The second term tests whether there is association on the average. This has approximately a
x2-distribution with one degree of freedom if there is no association in each group. Thus, define

k 2 k

k
1 a; 1
2 E —2 E —2
XH = S—z(a,- —a) = S—lz —da >

and
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Of course, if we decide that there are different degrees of association in different groups, this
means that at least one of the groups must have some association.
Consider now the data given above. A few additional points are introduced. We use the log

of the odds ratio, but the second group has @ = co. What shall we do about this?

With small numbers, this may happen due to a zero in a cell. The bias of the method is
reduced by adding 0.5 to each cell in each table:

[1] + -
+ 8.5 1.5
— 475 265
[2] + - 51 + -
+ 5.5 0.5 + 1.5 3.5
- 175 215 — 55 105
31 + - 61 + -
+ 4.5 4.5 + 1.5 2.5
- 135 775 — 35 115
[4] + - [71 + -
+ 2.5 10.5 + 2.5 2.5
— 12,5 655 — 125 375
Now
. n11 + 0.5 + 0.5 1 1 1 1
5= (n11 )(n )’ 5 = " " "
(n12 +0.5)(n21 +0.5) ni1+05 nyp+05 np+05 ny+05
The calculations above are shown in Table 6.3.
Table 6.3 Calculations for the Seven Tables
Tablei @ i =logw; s} /s?  a}/s} aifs?
1 3.16 1.15 0.843 1.186 1.571 1.365
2 13.51 2.60 2.285 0.438 2.966 1.139
3 5.74 1.75 0.531 1.882 5.747 3.289
4 1.25 0.22 0.591 1.693 0.083 0.375
5 0.82 —0.20 1.229 0.813 0.033 —0.163
6 1.97 0.68 1.439  0.695 0.320 0.472
7 3.00 1.10 0.907 1.103 1.331 1.212
Total 7.810  12.051 7.689
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>4/

i=1"1 i

X3 = (0.985)%(7.810) = 7.57

Then

1 7.689
— =-— =0985
“ 57 7810

k
a

2
Xy=3" ‘s’—'z ~x2 = 12,05~ 7.57 = 4.48
1

X %1 with 7 —1 = 6 degrees of freedom has an o = 0.05 critical value of 12.59 from Table A.3.
We do not conclude that the association differs between groups.

Moving to the X 2 , we find that 7.57 > 6.63, the X2 critical value with one degree of freedom
at the 0.010 level. We conclude that there is some overall association.

The odds ratio is estimated by @ = e? = €098 = 2.68. The standard error of @ is esti-

mated by
1

I3 s

To find a confidence interval for w, first find one for In w and “exponentiate” back. To find a
95% confidence interval, the calculation is

1.96
a9 _ 0985+ or 0985+0.701 or (0.284, 1.696)

/Z(l/siz) o +/7.810

Taking exponentials, the confidence interval for the overall odds ratio is (1.33, 5.45).
The second method of estimation is due to Mantel and Haenszel [1959]. Their estimate of

the odds ratio is L
~ o muOnnl) ni2(Hnai (@)
0=2, () /; n.G)

i=1

where n11(i), ny(i), n12(i), np1 (i), and n..(i) are nyy, nop, ni2, n2y, and n.. for the ith table.
In this problem,

8><26+5><21 4x77 2x65 1x10 1x11 2x37

5o 8 43+98+89+19+17+53
47><1+17><10+13><4+12><10+5><3+3><2+12><12
82 43 98 89 19 17 53

~12.1516 .
T 4.0473 =300

A test of association is given by the following statistic, X%, which is approximately a
chi-square random variable with one degree of freedom:
2
1
2

HZL PGS SN IROYRIGYING)
k

Zizl n1.(Hna. (Hn (DHno@)/n..()n..() — 1]

2
X4 =

The herniated disk data yield X% = 7.92, so that, as above, there is a significant (p < 0.01)
association between an acute herniated lumbar intervertebral disk and whether or not a job



176 COUNTING DATA

requires driving a motor vehicle. See Schlesselman [1982] and Breslow and Day [1980] for
methods of setting confidence intervals for w using the Mantel-Haenszel estimate.

In most circumstances, combining 2 x 2 tables will be used to adjust for other variables
that define the strata (i.e., that define the different tables). The homogeneity of the odds ratio
is usually of less interest unless the odds ratio differs widely among tables. Before testing for
homogeneity of the odds ratio, one should be certain that this is what is desired (see Note 6.3).

6.3.6 Screening and Diagnosis: Sensitivity, Specificity, and Bayes’ Theorem

In clinical medicine, and also in epidemiology, tests are often used to screen for the presence or
absence of a disease. In the simplest case the test will simply be classified as having a positive
(disease likely) or negative (disease unlikely) finding. Further, suppose that there is a “gold stan-
dard” that tells us whether or not a subject actually has the disease. The definitive classification
might be based on data from follow-up, invasive radiographic or surgical procedures, or autopsy
results. In many cases the gold standard itself will only be relatively correct, but nevertheless
the best classification available. In this section we discuss summarization of the prediction of
disease (as measured by our gold standard) by the test being considered. Ideally, those with the
disease should all be classified as having disease, and those without disease should be classified
as nondiseased. For this reason, two indices of the performance of a test consider how often
such correct classification occurs.

Definition 6.3. The sensitivity of a test is the percentage of people with disease who are
classified as having disease. A test is sensitive to the disease if it is positive for most people
having the disease. The specificity of a test is the percentage of people without the disease who
are classified as not having the disease. A test is specific if it is positive for a small percentage
of those without the disease.

Further terminology associated with screening and diagnostic tests are true positive, true
negative, false positive, and false negative tests.

Definition 6.4. A test is a true positive test if it is positive and the subject has the disease.
A test is a true negative test if the test is negative and the subject does not have the disease.
A false positive test is a positive test of a person without the disease. A false negative test is a
negative test of a person with the disease.

Definition 6.5. The predictive value of a positive test is the percentage of subjects with a
positive test who have the disease; the predictive value of a negative test is the percentage of

subjects with a negative test who do not have the disease.

Suppose that data are collected on a test and presented in a 2 x 2 table as follows:

Disease Category

Screening Test Result  Disease (+) Nondiseased (—)

a b
Positive (+) test (true +' s) (false + )

c d
Negative (—) test (false —' s) (true —'s)

The sensitivity is estimated by 100a/(a+c), the specificity by 100d / (b+d). If the subjects are
representative of a population, the predictive value of positive and negative tests are estimated
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by 100a/(a + b) and 100d/(c + d), respectively. These predictive values are useful only when
the proportions with and without the disease in the study group are approximately the same as
in the population where the test will be used to predict or classify (see below).

Example 6.16. Remein and Wilkerson [1961] considered a number of screening tests for
diabetes. They had a group of consultants establish criteria, their gold standard, for diabetes.
On each of a number of days, they recruited patients being seen in the outpatient department
of the Boston City Hospital for reasons other than suspected diabetes. The table below presents
results on the Folin—-Wu blood test used 1 hour after a test meal and using a blood sugar level
of 150 mg per 100 mL of blood sugar as a positive test.

Test Diabetic  Nondiabetic  Total

+ 56 49 105
— 14 461 475
Total 70 510 580

From this table note that there are 56 true positive tests compared to 14 false negative tests.
The sensitivity is 100(56)/(56 4 14) = 80.0%. The 49 false positive tests and 461 true negative
tests give a specificity of 100(461)/(49 +461) = 90.4%. The predictive value of a positive test
is 100(56) /(56 +49) = 53.3%. The predictive value of a negative test is 100(461)/(14+461) =
97.1%.

If a test has a fixed value for its sensitivity and specificity, the predictive values will change
depending on the prevalence of the disease in the population being tested. The values are
related by Bayes’ theorem. This theorem tells us how to update the probability of an event
A: for example, the event of a subject having disease. If the subject is selected at random
from some population, the probability of A is the fraction of people having the disease. Sup-
pose that additional information becomes available; for example, the results of a diagnostic
test might become available. In the light of this new information we would like to update
or change our assessment of the probability that A occurs (that the subject has disease). The
probability of A before receiving additional information is called the a priori or prior proba-
bility. The updated probability of A after receiving new information is called the a posteriori
or posterior probability. Bayes’ theorem is an explanation of how to find the posterior proba-
bility.

Bayes’ theorem uses the concept of a conditional probability. We review this concept in
Example 6.17.

Example 6.17. Comstock and Partridge [1972] conducted an informal census of Washing-
ton County, Maryland, in 1963. There were 127 arteriosclerotic heart disease deaths in the
follow-up period. Of the deaths, 38 occurred among people whose usual frequency of church
attendance was once or more per week. There were 24,245 such people as compared to 30,603
people whose usual attendance was less than once weekly. What is the probability of an arte-
riosclerotic heart disease death (event A) in three years given church attendance usually once
or more per week (event B)?

From the data

127
P[A] = ——————— =0.0023
24,245 + 30,603
24,245
P[B]l= ———————— =0.4420

24,245 + 30,603
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38
P[A & B]= ———— = 0.0007
[ ] 24,245 4 30,603
P[A and B] _ 0.0007

P[B] ~ 0.4420

P[A | B] = =0.0016

If you knew that someone attended church once or more per week, the prior estimate of 0.0023
of the probability of an arteriosclerotic heart disease death in three years would be changed to
a posterior estimate of 0.0016.

Using the conditional probability concept, Bayes’ theorem may be stated.

Fact 1. (Bayes’ Theorem) Let By, ..., Bx be events such that one and only one of them
must occur. Then for each i,

P[A|B;]P[Bi]

P[Bi|A]l = P[A|B11P[B1] + --- + P[A|Bx]P[Bx]

Example 6.18. We use the data of Example 6.16 and Bayes’ theorem to show that the
predictive power of the test is related to the prevalence of the disease in the population. Suppose
that the prevalence of the disease were not 70/580 (as in the data given), but rather, 6%. Also
suppose that the sensitivity and specificity of the test were 80.0% and 90.4%, as in the example.
What is the predictive value of a positive test?

We want P[disease+|test+]. Let By be the event that the patient has disease and B, be the
event of no disease. Let A be the occurrence of a positive test. A sensitivity of 80.0% is the
same as P[A|B;] = 0.800. A specificity of 90.4% is equivalent to P[notA|B;] = 0.904. It is
easy to see that

P[not A|B] + P[A|B] =1

for any A and B. Thus, P[A|B2] = 1—0.904 = 0.096. By assumption, P[disease+] = P[B1] =
0.06, and P[disease—] = P[B3] = 0.94. By Bayes’ theorem,

P[test + |disease+] P[disease+]
P([test + |disease+] P[disease+] + P|[test + |disease—]P[disease—]

P[disease+|test+] =

Using our definitions of A, By, and B, this is

P[A|B1]P[B1]
P[A|B1]P[B1]+ P[A|B2]P[B:]
0.800 x 0.06
~ 0.800 x 0.06 + 0.096 x 0.94
= 0.347

P[B1]A] =

If the disease prevalence is 6%, the predictive value of a positive test is 34.7% rather than 53.3%
when the disease prevalence is 70/580 (12.1%).

Problems 6.15 and 6.28 illustrate the importance of disease prevalence in assessing the results
of a test. See Note 6.8 for relationships among sensitivity, specificity, prevalence, and predictive
values of a positive test. Sensitivity and specificity are discussed further in Chapter 13. See also
Pepe [2003] for an excellent overview.
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6.4 MATCHED OR PAIRED OBSERVATIONS

The comparisons among proportions in the preceding sections dealt with samples from different
populations or from different subsets of a specified population. In many situations, the estimates
of the proportions are based on the same objects or come from closely related, matched, or
paired observations. You have seen matched or paired data used with a one-sample 7-test.

A standard epidemiological tool is the retrospective paired case—control study. An example
was given in Chapter 1. Let us recall the rationale for such studies. Suppose that one wants to
see whether or not there is an association between a risk factor (say, use of oral contraceptives),
and a disease (say, thromboembolism). Because the incidence of the disease is low, an extremely
large prospective study would be needed to collect an adequate number of cases. One strategy
is to start with the cases. The question then becomes one of finding appropriate controls for the
cases. In a matched pair study, one control is identified for each case. The control, not having
the disease, should be identical to the case in all relevant ways except, possibly, for the risk
factor (see Note 6.6).

Example 6.19. This example is a retrospective matched pair case—control study by Sartwell
et al. [1969] to study thromboembolism and oral contraceptive use. The cases were 175 women
of reproductive age (15 to 44), discharged alive from 43 hospitals in five cities after initial
attacks of idiopathic (i.e., of unknown cause) thrombophlebitis (blood clots in the veins with
inflammation in the vessel walls), pulmonary embolism (a clot carried through the blood and
obstructing lung blood flow), or cerebral thrombosis or embolism. The controls were matched
with their cases for hospital, residence, time of hospitalization, race, age, marital status, parity,
and pay status. More specifically, the controls were female patients from the same hospital
during the same six-month interval. The controls were within five years of age and matched
on parity (0, 1, 2, 3, or more prior pregnancies). The hospital pay status (ward, semiprivate, or
private) was the same. The data for oral contraceptive use are:

Control Use?

Case Use? Yes No

Yes 10 57
No 13 95

The question of interest: Are cases more likely than controls to use oral contraceptives?

6.4.1 Matched Pair Data: McNemar’s Test and Estimation of the Odds Ratio

The 2 x 2 table of Example 6.19 does not satisfy the assumptions of previous sections. The
proportions using oral contraceptives among cases and controls cannot be considered samples
from two populations since the cases and controls are paired; that is, they come together. Once
a case is selected, the control for the case is constrained to be one of a small subset of people
who match the case in various ways.

Suppose that there is no association between oral contraceptive use and thromboembolism
after taking into account relevant factors. Suppose a case and control are such that only one
of the pair uses oral contraceptives. Which one is more likely to use oral contraceptives? They
may both be likely or unlikely to use oral contraceptives, depending on a variety of factors.
Since the pair have the same values of such factors, neither member of the pair is more likely
to have the risk factor! That is, in the case of disagreement, or discordant pairs, the probability
that the case has the risk factor is 1/2. More generally, suppose that the data are
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Control Has Risk Factor?

Case Has Risk Factor? Yes No
Yes a b
No c d

If there is no association between disease (i.e., case or control) and the presence or absence
of the risk factor, the number b is binomial with 7 = 1/2 and n = b + ¢. To test for association
we test w = 1/2, as shown previously. For large n, say n > 30,

_(b—o)?
T b+c

X2

has a chi-square distribution with one degree of freedom if w = 1/2. For Example 6.19,

y2_ 713

= 27.66
57+13

From the chi-square table, p < 0.001, so that there is a statistically significant association
between thromboembolism and oral contraceptive use. This statistical test is called McNemar’s
test.

Procedure 6. For retrospective matched pair data, the odds ratio is estimated by

b

o, aired =
P C

The standard error of the estimate is estimated by

~ o, aired
1 + @pai g
( wpdlred) b+c
In Example 6.19, we estimate the odds ratio by
57
w=— =438
YT

The standard error is estimated by

(1 +4.38),/ 438 1.35
. 70

An approximate 95% confidence interval is given by
438+ (1.96)(1.35) or (1.74,7.02)
More precise intervals may be based on the use of confidence intervals for a binomial proportion

and the fact that ﬁpaired/ (cﬁpaired + 1) =b/(b + ¢) is a binomial proportion (see Fleiss [1981]).
See Note 6.5 for further discussion of the chi-square analysis of paired data.



POISSON RANDOM VARIABLES 181
6.5 POISSON RANDOM VARIABLES

The Poisson distribution occurs primarily in two closely related situations. The first is a situation
in which one counts discrete events in space or time, or some other continuous situation. For
example, one might note the time of arrival (considered as a particular point in time) at an
emergency medical service over a fixed time period. One may count the number of discrete
occurrences of arrivals over this continuum of time. Conceptually, we may get any nonnegative
integer, no matter how large, as our answer. A second example occurs when counting numbers
of red blood cells that occur in a specified rectangular area marked off in the field of view.
In a diluted blood sample where the distance between cells is such that they do not tend to
“bump into each other,” we may idealize the cells as being represented by points in the plane.
Thus, within the particular area of interest, we are counting the number of points observed. A
third example where one would expect to model the number of counts by a Poisson distribution
would be a situation in which one is counting the number of particle emissions from a radioactive
source. If the time period of observation is such that the radioactivity of the source does not
decrease significantly (i.e., the time period is small compared to the half-life of a particle), the
counts (which may be considered as coming at discrete time points) would again be modeled
appropriately by a Poisson distribution.

The second major use of the Poisson distribution is as an approximation to the binomial
distribution. If # is large and 7 is small in a binomial situation, the number of successes is very
closely modeled by the Poisson distribution. The closeness of the approximation is specified by
a mathematical theorem. As a rough rule of thumb, for most purposes the Poisson approximation
will be adequate if 7 is less than or equal to 0.1 and n is greater than or equal to 20.

For the Poisson distribution to be an appropriate model for counting discrete points occurring
in some sort of a continuum, the following two assumptions must hold:

1. The number of events occurring in one part of the continuum should be statistically
independent of the number of events occurring in another part of the continuum. For
example, in the emergency room, if we measure the number of arrivals during the first
half hour, this event could reasonably be considered statistically independent of the number
of arrivals during the second half hour. If there has been some cataclysmic event such
as an earthquake, the assumption will not be valid. Similarly, in counting red blood cells
in a diluted blood solution, the number of red cells in one square might reasonably be
modeled as statistically independent of the number of red cells in another square.

2. The expected number of counts in a given part of the continuum should approach zero as
its size approaches zero. Thus, in observing blood cells, one does not expect to find any
in a very small area of a diluted specimen.

6.5.1 Examples of Poisson Data

Example 6.3 [Bucher et al., 1976] examines racial differences in the incidence of ABO hemolytic
disease by examining records for infants born at the North Carolina Memorial Hospital. The
samples of black and white infants gave the following estimated proportions with hemolytic
disease:

black infants, n; = 3584, p; =43/3584

white infants, n, = 3831, pr =17/3831

The observed number of cases might reasonably be modeled by the Poisson distribution.
(Note: The n is large and 7 is small in a binomial situation.) In this paper, studying the
incidence of ABO hemolytic disease in black and white infants, the observed fractions for black
and white infants of having the disease were 43/3584 and 17/3831. The 43 and 17 cases may
be considered values of Poisson random variables.
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A second example that would be modeled appropriately by the Poisson distribution is the
number of deaths resulting from a large-scale vaccination program. In this case, n will be very
large and 7 will be quite small. One might use the Poisson distribution in investigating the
simultaneous occurrence of a disease and its association within a vaccination program. How
likely is it that the particular “chance occurrence” might actually occur by chance?

Example 6.20. As a further example, a paper by Fisher et al. [1922] considers the accuracy
of the plating method of estimating the density of bacterial populations. The process we are
speaking about consists in making a suspension of a known mass of soil in a known volume
of salt solution, and then diluting the suspension to a known degree. The bacterial numbers
in the diluted suspension are estimated by plating a known volume in a nutrient gel medium
and counting the number of colonies that develop from the plate. The estimate was made by
a calculation that takes into account the mass of the soil taken and the degree of dilution. If
we consider the colonies to be points occurring in the volume of gel, a Poisson model for
the number of counts would be appropriate. Table 6.4 provides counts from seven different
plates with portions of soil taken from a sample of Barnfield soil assayed in four parallel
dilutions:

Example 6.21. A famous example of the Poisson distribution is data by von Bortkiewicz
[1898] showing the chance of a cavalryman being killed by a horse kick in the course of a
year (Table 6.5). The data are from recordings of 10 corps over a period of 20 years supplying
200 readings. A question of interest here might be whether a Poisson model is appropriate.
Was the corps with four deaths an “unlucky” accident, or might there have been negligence of
some kind?

Table 6.4 Counts for Seven Soil Samples

Dilution
Plate I 1I 11 v
1 72 74 78 69
2 69 72 74 67
3 63 70 70 66
4 59 69 58 64
5 59 66 58 62
6 53 58 56 58
7 51 52 56 54

Mean 60.86 65.86 64.29 62.86

Table 6.5 Horse-kick Fatality
Data

Number of Deaths per
Corps per Year Frequency

0 109
1 65
2 22
3 3
4 1
5 0
6 0
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6.5.2 Poisson Model

The Poisson probability distribution is characterized by one parameter, A. For each nonnegative
integer k, if Y is a variable with the Poisson distribution with parameter A,

7)\)\/6
k!

The parameter A is both the mean and variance of the Poisson distribution,

e
PlY =k] =

EY)=var(Y)= A

Bar graphs of the Poisson probabilities are given in Figure 6.3 for selected values of A. As the
mean (equal to the variance) increases, the distribution moves to the right and becomes more
spread out and more symmetrical.
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Figure 6.3 Poisson distribution.
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Table 6.6 Binomial and Poisson Probabilities

Binomial Probabilities

n =10 n =20 n =40 Probabilities

k 7=020 7=010 x=0.05 Poisson
0 0.1074 0.1216 0.1285 0.1353
1 0.2684 0.2702 0.2706 0.2707
2 0.3020 0.2852 0.2777 0.2707
3 0.2013 0.1901 0.1851 0.1804
4 0.0881 0.0898 0.0901 0.0902
5 0.0264 0.0319 0.0342 0.0361
6 0.0055 0.0089 0.0105 0.0120

In using the Poisson distribution to approximate the binomial distribution, the parameter A
is chosen to equal nm, the expected value of the binomial distribution. Poisson and binomial
probabilities are given in Table 6.6 for comparison. This table gives an idea of the accuracy of
the approximation (table entry is P[Y = k], A = 2 = nx) for the first seven values of three
distributions.

A fact that is often useful is that a sum of independent Poisson variables is itself a Poisson
variable. The parameter for the sum is the sum of the individual parameter values. The parameter
A of the Poisson distribution is estimated by the sample mean when a sample is available. For
example, the horse-kick data leads to an estimate of A—say [—given by

_0x1094+1x65+2x224+3x3+4x1

[
109+65+22+3+1

=0.61

Now, we consider the construction of confidence intervals for a Poisson parameter. Consider
the case of one observation, Y, and a small result, say, ¥ < 100. Note 6.8 describes how
confidence intervals are calculated and there is a table in the Web appendix to this chapter.
From this we find a 95% confidence interval for the proportion of black infants having ABO
hemolytic disease, in the Bucher et al. [1976] study. The approximate Poisson variable is the
binomial variable, which in this case is equal to 43; thus, a 95% confidence interval for A = nw
is (31.12, 57.92). The equation A = nm equates the mean values for the Poisson and binomial
models. Now nr is in (31.12, 57.92) if and only if 7 is in the interval

31.12 57.92
n ' n

In this case, n = 3584, so the confidence interval is

<31.12 57.92

EVrYRICYTY R or (0.0087,0.0162)
3584 " 3584

These results are comparable with the 95% binomial limits obtained in Example 6.9: (0.0084,
0.0156).

6.5.3 Large-Sample Statistical Inference for the Poisson Distribution
Normal Approximation to the Poisson Distribution

The Poisson distribution has the property that the mean and variance are equal. For the mean
large, say > 100, the normal approximation can be used. That is, let ¥ ~ Poisson(X) and
A > 100. Then, approximately, ¥ ~ N (A, A). An approximate 100(1 — «)% confidence interval
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for A can be formed from
) =5+ 1_a/2\/?

where z1_4/2 is a standard normal deviate at two-sided significance level . This formula is
based on the fact that Y estimates the mean as well as the variance. Consider, again, the data
of Bucher et al. [1976] (Example 6.3) dealing with the incidence of ABO hemolytic disease.
The observed value of Y, the number of black infants with ABO hemolytic disease, was 43.
A 95% confidence interval for the mean, A, is (31.12, 57.92). Even though Y < 100, let us
use the normal approximation. The estimate of the variance, o', of the normal distribution is
Y = 43, so that the standard deviation is 6.56. An approximate 95% confidence interval is
43 +£ (1.96)(6.56), producing (30.1, 55.9), which is close to the values (31.12, 57.92) tabled.

Suppose that instead of one Poisson value, there is a random sample of size n, Y1, Y2, ..., Y,
from a Poisson distribution with mean A. How should one construct a confidence interval for A
based on these data? The sum Y = Y; + Y, + --- + Y, is Poisson with mean nA. Construct a
confidence interval for nA as above, say (L, U). Then, an appropriate confidence interval for A
is (L/n, U/n). Consider Example 6.20, which deals with estimating the bacterial density of soil
suspensions. The results for sample I were 72, 69, 63, 59, 59, 53, and 51. We want to set up a
95% confidence interval for the mean density using the seven observations. For this example,
n="17.

Y=Y+ 4+ ---4+Y;=72469+---4+51 =426

A 95% confidence interval for 7X is 426 + 1.96./426.

L

L = 385.55, == 55.1

U = 466.45, % = 66.6
Y =60.9

The 95% confidence interval is (55.1, 66.6).

Square Root Transformation

It is often considered a disadvantage to have a distribution with a variance not “stable” but
dependent on the mean in some way, as, for example, the Poisson distribution. The question
is whether there is a transformation, g(Y), of the variable such that the variance is no longer
dependent on the mean. The answer is “yes.” For the Poisson distribution, it is the square root
transformation. It can be shown for “reasonably large” A, say A > 30, that if ¥ ~ Poisson(}),
then var(vY) = 0.25.

A side benefit is that the distribution of /Y is more “nearly normal,” that is, for specified A,
the difference between the sampling distribution of ~/Y and the normal distribution is smaller
for most values than the difference between the distribution of ¥ and the normal distribution.

For the situation above, it is approximately true that

VY ~ N(v/x,0.25)

Consider Example 6.20 again. A confidence interval for /A will be constructed and then
converted to an interval for A. Let X = /Y.

Y ‘ 72 69 63 59 59 53 51

X=V¥ | 849 831 794 768 768 728 7.4
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The sample mean and variance of X are X = 7.7886 and sf = 0.2483. The sample variance
is very close to the variance predicted by the theory ze = 0.2500. A 95% confidence interval
on /A can be set up from

_ 24
X+ 1965 or 77886 4 (1.96),] 22253
J7

producing lower and upper limits in the X scale.

L, =74195, U, =8.1577
L2 =550, U2=665

which are remarkably close to the values given previously.

Poisson Homogeneity Test

In Chapter 4 the question of a test of normality was discussed and a graphical procedure was
suggested. Fisher et al. [1922], in the paper described in Example 6.20, derived an approximate
test for determining whether or not a sample of observations could have come from a Poisson
distribution with the same mean. The test does not determine “Poissonness,” but rather, equality
of means. If the experimental situations are identical (i.e., we have a random sample), the test
is a test for Poissonness.

The test, the Poisson homogeneity test, is based on the property that for the Poisson distribu-
tion, the mean equals the variance. The test is the following: Suppose that Y1, Y2, ..., Y, are a
random sample from a Poisson distribution with mean A. Then, for a large A—say, A > 50—the
quantity
(n —1)s?

Y

X% =

has approximately a chi-square distribution with n — 1 degrees of freedom, where s2 is the
sample variance.
Consider again the data in Example 6.20. The mean and standard deviation of the seven
observations are
n=17 Y=6086  s,=77552

(71— 1)(1.7552)*
B 60.86

X2 =5.93

Under the null hypothesis that all the observations are from a Poisson distribution with the
same mean, the statistic X2 = 5.93 can be referred to a chi-square distribution with six degrees
of freedom. What will the rejection region be? This is determined by the alternative hypothesis.
In this case it is reasonable to suppose that the sample variance will be greater than expected if
the null hypothesis is not true. Hence, we want to reject the null hypothesis when x? is “large”;
“large” in this case means P[X?% > X%,a] =a.

Suppose that o = 0.05; the critical value for x127 o With 6 degrees of freedom is 12.59. The
observed value X2 = 5.93 is much less than that and the null hypothesis is not rejected.

6.6 GOODNESS-OF-FIT TESTS

The use of appropriate mathematical models has made possible advances in biomedical science;
the key word is appropriate. An inappropriate model can lead to false or inappropriate ideas.
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In some situations the appropriateness of a model is clear. A random sample of a population
will lead to a binomial variable for the response to a yes or no question. In other situations the
issue may be in doubt. In such cases one would like to examine the data to see if the model
used seems to fit the data. Tests of this type are called goodness-of-fit tests. In this section we
examine some tests where the tests are based on count data. The count data may arise from
continuous data. One may count the number of observations in different intervals of the real
line; examples are given in Sections 6.6.2 and 6.6.4.

6.6.1 Multinomial Random Variables

Binomial random variables count the number of successes in n independent trials where one and
only one of two possibilities must occur. Multinomial random variables generalize this to allow
more than two possible outcomes. In a multinomial situation, outcomes are observed that take
one and only one of two or more, say k, possibilities. There are n independent trials, each with
the same probability of a particular outcome. Multinomial random variables count the number
of occurrences of a particular outcome. Let n; be the number of occurrences of outcome i. Thus,
n; is an integer taking a value among 0, 1, 2, ... , n. There are k different n;, which add up to
n since one and only one outcome occurs on each trial:

ny+ny+---+np=n

Let us focus on a particular outcome, say the ith. What are the mean and variance of n;? We
may classify each outcome into one of two possibilities, the ith outcome or anything else. There
are then n independent trials with two outcomes. We see that n; is a binomial random variable
when considered alone. Let m;, where i = 1, ..., k, be the probability that the ith outcome
occurs. Then

E(n;) = nm;, var(n;) = nm;(1 — ;) Q)

fori=1,2,...,k.

Often, multinomial outcomes are visualized as placing the outcome of each of the n trials
into a separate cell or box. The probability 7r; is then the probability that an outcome lands in
the ith cell.

The remainder of this section deals with multinomial observations. Tests are presented to see
if a specified multinomial model holds.

6.6.2 Known Cell Probabilities

In this section, the cell probabilities 1, ... , 7 are specified. We use the specified values as a
null hypothesis to be compared with the data ny, ..., ng. Since E(n;) = nm;, it is reasonable
to examine the differences n; — nm;. The statistical test is given by the following fact.

0

Fact 2. Letn;, wherei =1, ..., k, be multinomial. Under Hy : m; = 7},

k 042
) (n; —nmw;)
X2=3 —=

i—1 nw;

has approximately a chi-square distribution with k — 1 degrees of freedom. If some 7; are not

equal to nl.o, X2 will tend to be too large.

The distribution of X2 is well approximated by the chi-square distribution if all of the
expected values, nnio, are at least five, except possibly for one or two of the values. When the
null hypothesis is not true, the null hypothesis is rejected for X? too large. At significance level
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o, reject Hyp if X2 > Xlzia’kil, where Xlzfa,kfl is the 1 — o percentage point for a X2 random
variable with k — 1 degrees of freedom.

Since there are k cells, one might expect the labeling of the degrees of freedom to be k
instead of kK — 1. However, since the n; add up to n we only need to know k — 1 of them to
know all k values. There are really only k — 1 quantities that may vary at a time; the last quantity
is specified by the other kK — 1 values.

The form of X2 may be kept in mind by noting that we are comparing the observed values,
n;, and expected values, nnio . Thus,

X2 — Z (observed — expected)2
expected

Example 6.22. Are births spread uniformly throughout the year? The data in Table 6.7
give the number of births in King County, Washington, from 1968 through 1979 by month. The
estimated probability of a birth in a given month is found by taking the number of days in that
month and dividing by the total number of days (leap years are included in Table 6.7).

Testing the null hypothesis using Table A.3, we see that 163.15 > 31.26 = Xg.OOl,ll’ so that
p < 0.001. We reject the null hypothesis that births occur uniformly throughout the year. With
this large sample size (n = 160,654) it is not surprising that the null hypothesis can be rejected.
We can examine the magnitude of the effect by comparing the ratio of observed to expected
numbers of births, with the results shown in Table 6.8. There is an excess of births in the spring
(March and April) and a deficit in the late fall and winter (October through January). Note
that the difference from expected values is small. The maximum “excess” of births occurred

Table 6.7 Births in King County, Washington, 1968-1979

Month Births Days 71,.0 I’HTI-O (n; — nn[())z/nnio
January 13,016 310 0.08486 13,633 27.92
February 12,398 283 0.07747 12,446 0.19
March 14,341 310 0.08486 13,633 36.77
April 13,744 300 0.08212 13,193 23.01
May 13,894 310 0.08486 13,633 5.00
June 13,433 300 0.08212 13,193 4.37
July 13,787 310 0.08486 13,633 1.74
August 13,537 310 0.08486 13,633 0.68
September 13,459 300 0.08212 13,193 5.36
October 13,144 310 0.08486 13,633 17.54
November 12,497 300 0.08212 13,193 36.72
December 13,404 310 0.08486 13,633 3.85
Total 160,654 (n) 3653 0.99997 163.15 = X2

Table 6.8 Ratios of Observed to Expected Births

Observed/Expected Observed/Expected
Month Births Month Births
January 0.955 July 1.011
February 0.996 August 0.993
March 1.052 September 1.020
April 1.042 October 0.964
May 1.019 November 0.947
June 1.018 December 0.983




GOODNESS-OF-FIT TESTS 189

in March and was only 5.2% above the number expected. A plot of the ratio vs. month would
show a distinct sinusoidal pattern.

Example 6.23. Mendel [1866] is justly famous for his theory and experiments on the prin-
ciples of heredity. Sir R. A. Fisher [1936] reviewed Mendel’s work and found a surprisingly
good fit to the data. Consider two parents heterozygous for a dominant—recessive trait. That is,
each parent has one dominant gene and one recessive gene. Mendel hypothesized that all four
combinations of genes would be equally likely in the offspring. Let A denote the dominant gene
and a denote the recessive gene. The two parents are Aa. The offspring should be

Genotype Probability

AA 1/4
Aa 12
aa 1/4

The Aa combination has probability 1/2 since one cannot distinguish between the two cases
where the dominant gene comes from one parent and the recessive gene from the other parent.
In one of Mendel’s experiments he examined whether a seed was wrinkled, denoted by a, or
smooth, denoted by A. By looking at offspring of these seeds, Mendel classified the seeds as
aa, Aa, or AA. The results were

AA Aa aa Total

Number 159 321 159 639

as presented in Table II of Fisher [1936]. Do these data support the hypothesized 1:2:1 ratio?
The chi-square statistic is

,  (159—159.75)2 (321 —319.5)% (159 —159.75)2

=0.014
159.75 319.5 159.75

For the x? distribution with two degrees of freedom, p > 0.95 from Table A.3 (in fact
p = 0.993), so that the result has more agreement than would be expected by chance. We return
to these data in Example 6.24.

6.6.3 Addition of Independent Chi-Square Variables: Mean and Variance of the
Chi-Square Distribution

Chi-square random variables occur so often in statistical analysis that it will be useful to know
more facts about chi-square variables. In this section facts are presented and then applied to an
example (see also Note 5.3).

Fact 3. Chi-square variables have the following properties:

1. Let X2 be a chi-square random variable with m degrees of freedom. Then

E(X»=m and var(X?) =2m

2. Let X %, X ,% be independent chi-square variables with m, ... , m, degrees of freedom.
Then X2 = X% 4+ +X,% is a chi-square random variable with m = m| +my+---+m,
degrees of freedom.
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Table 6.9 Chi-Square Values for Mendel’s Experiments

Experiments x? Degrees of Freedom
3:1 Ratios 2.14 7
2:1 Ratios 5.17 8
Bifactorial experiments 2.81 8
Gametic ratios 3.67 15
Trifactorial experiments 15.32 26
Total 29.11 64

3. Let X? be a chi-square random variable with m degrees of freedom. If m is large, say
m > 30,

X2—m

V2m

is approximately a N (0, 1) random variable.

Example 6.24. We considered Mendel’s data, reported by Fisher [1936], in Example 6.23.
As Fisher examined the data, he became convinced that the data fit the hypothesis too well [Box,
1978, pp. 195, 300]. Fisher comments: “Although no explanation can be expected to be satis-
factory, it remains a possibility among others that Mendel was deceived by some assistant who
knew too well what was expected.”

One reason Fisher arrived at his conclusion was by combining x> values from different
experiments by Mendel. Table 6.9 presents the data.

If all the null hypotheses are true, by the facts above, X> = 29.11 should look like a x2
with 64 degrees of freedom. An approximate normal variable,

29.11 — 64
z="

= —-3.08

V128
has less than 1 chance in 1000 of being this small (p = 0.99995). One can only conclude that
something peculiar occurred in the collection and reporting of Mendel’s data.

6.6.4 Chi-Square Tests for Unknown Cell Probabilities

Above, we considered tests of the goodness of fit of multinomial data when the probability
of being in an individual cell was specified precisely: for example, by a genetic model of how
traits are inherited. In other situations, the cell probabilities are not known but may be estimated.
First, we motivate the techniques by presenting a possible use; next, we present the techniques,
and finally, we illustrate the use of the techniques by example.

Consider a sample of n numbers that may come from a normal distribution. How might we
check the assumption of normality? One approach is to divide the real number line into a finite
number of intervals. The number of points observed in each interval may then be counted. The
numbers in the various intervals or cells are multinomial random variables. If the sample were
normal with known mean p and known standard deviation o, the probability, 7;, that a point
falls between the endpoints of the ith interval—say Y; and Y>—is known to be

Y, — Y —
mzq)(z M)_CD<1 M)
o o
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where @ is the distribution function of a standard normal random variable. In most cases, i
and o are not known, so u and o, and thus 7;, must be estimated. Now m; depends on two
variables, u and o : m; = m; (i, o) where the notation 7; (4, o) means that r; is a function of
w and o. It is natural if we estimate u and o by, say, & and T, to estimate 7; by p; (iL, ®).

That is,
~ ~ Y,—1 Yi—1
pi(u«,o)=<1>< — >—<I>< —
o o

From this, a statistic (X?2) can be formed as above. If there are k cells,

[ni — np; (L, 3)1?
np;i (i, o)

X2 Z (observed — expected)? _ k
i=

expected "

Does X2 now have a chi-square distribution? The following facts describe the situation.

Fact 4.  Suppose that n observations are grouped or placed into k categories or cells such
that the probability of being in cell i is 7; = m;(®1, ... , ©;), where 7; depends on s parameters
©®; and where s < k— 1. Suppose that none of the s parameters are determined by the remaining
s — 1 parameters. Then:

1. IfO Loeees @s, the parameter estimates, are chosen to minimize X 2 the distribution of
X? is approximately a chi-square random variable with k — s — 1 degrees of freedom for
large n. Estimates chosen to minimize the value of X2 are called minimum chi-square
estimates.

2. If estimates of ®1, ..., ®; other than the minimum chi-square estimates are used, then
for large n the distribution function of X? lies between the distribution functions of chi-
square variables with k — s — 1 degrees of freedom and k — 1 degrees of freedom. More

specifically, let Xi wm denote the a-significance-level critical value for a chi-square

distribution with m degrees of freedom. The significance-level-o critical value of X2 is
less than or equal to X %_a. «_1- A conservative test of the multinomial model is to reject

the null hypothesis that the model is correct if X2 > Xlz—a, k1
These complex statements are best understood by applying them to an example.

Example 6.25. Table 3.4 in Section 3.3.1 gives the age in days at death of 78 SIDS cases.
Test for normality at the 5% significance level using a x >-test.

Before performing the test, we need to divide the real number line into intervals or cells.
The usual approach is to:

1. Estimate the parameters involved. In this case the unknown parameters are u and . We
estimate by Y and s.

2. Decide on k, the number of intervals. Let there be n observations. A good approach is to
choose k as follows:
a. For 20 <n <100,k =n/5.
b. For n > 300, k = 3.51%/ (here, n?/° is n raised to the 2/5 power).
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3. Find the endpoints of the k intervals so that each interval has probability 1/k. The k
intervals are
(—o0, aq] interval 1

(ay, ar] interval 2

(ax—2, ax—1] interval (k — 1)

(ax—1,00) interval k

Let Z; be a value such that a standard normal random variable takes a value less than Z;
with probability i /k. Then -
a=X+sZ7Z;

(In testing for a distribution other than the normal distribution, other methods of finding
cells of approximately equal probability need to be used.)

4. Compute the statistic
i (ni —n/k)’
P n/k

where n; is the number of data points in cell i.

To apply steps 1 to 4 to the data at hand, one computes n = 78, X = 97.85, and s = 55.66.
As 78/5 = 15.6, we will use k = 15 intervals. From tables of the normal distribution, we find
Zi,i=1,2,...,14, so that a standard normal random variable has probability i /15 of being
less than Z;. The values of Z; and a; are given in Table 6.10.

The number of observations observed in the 15 cells, from left to right, are 0, 8, 7, 5, 7, 9,
7,5,6,6,2,2, 3,5, and 6. In each cell, the number of observations expected is np; = n/k or
78/15 = 5.2. Then

0-527 (8-52)7? 6—52)°
PR 52) 4 ¢ 52) +...+(572):16.62

We know that the 0.05 critical values are between the chi-square critical values with 12 and 14
degrees of freedom. The two values are 21.03 and 23.68. Thus, we do not reject the hypothesis
of normality. (If the X? value had been greater than 23.68, we would have rejected the null
hypothesis of normality. If X2 were between 21.03 and 23.68, the answer would be in doubt. In
that case, it would be advisable to compute the minimum chi-square estimates so that a known
distribution results.)

Note that the largest observation, 307, is (307 — 97.85)/55.6 = 3.76 sample standard devi-
ations from the sample mean. In using a chi-square goodness-of-fit test, all large observations
are placed into a single cell. The magnitude of the value is lost. If one is worried about large
outlying values, there are better tests of the fit to normality.

Table 6.10 Z; and a; Values

i Z; a; i Z; a; i Zi a;

1 —150 128 6 —0.25 849 | 11 0.62 135.0
2 —1.11 353 7 —0.08 947 | 12 0.84 147.7
3 —-0.84 509 8 0.08 1039 | 13 1.11 163.3
4 —-0.62 635 9 025 1137 | 14 150 185.8
5 =043 745 |10 043 124.1
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6.1 Continuity Correction for 2 x 2 Table Chi-Square Values

There has been controversy about the appropriateness of the continuity correction for 2 x 2
tables [Conover, 1974]. The continuity correction makes the actual significance levels under the
null hypothesis closer to the hypergeometric (Fisher’s exact test) actual significance levels. When
compared to the chi-square distribution, the actual significance levels are too low [Conover,
1974; Starmer et al., 1974; Grizzle, 1967]. The uncorrected “chi-square” value referred to chi-
square critical values gives actual and nominal significance levels that are close. For this reason,
the authors recommend that the continuity correction not be used. Use of the continuity correc-
tion would be correct but overconservative. For arguments on the opposite side, see Mantel and
Greenhouse [1968]. A good summary can be found in Little [1989].

6.2 Standard Error of @ as Related to the Standard Error of log®

Let X be a positive variate with mean p, and standard deviation oy. Let ¥ = log, X. Let the
mean and standard deviation of Y be ., and oy, respectively. It can be shown that under certain
conditions
Ox .
A
y
Mx

The quantity oy /u, is known as the coefficient of variation. Another way of writing this is
oy = HxOy

If the parameters are replaced by the appropriate statistics, the expression becomes

Sy = XSy

and the standard deviation of @ then follows from this relationship.

6.3 Some Limitations of the Odds Ratio

The odds ratio uses one number to summarize four numbers, and some information about the
relationship is necessarily lost. The following example shows one of the limitations. Fleiss [1981]
discusses the limitations of the odds ratio as a measure for public health. He presents the mortality
rates per 100,000 person-years from lung cancer and coronary artery disease for smokers and
nonsmokers of cigarettes [U.S. Department of Health, Education and Welfare, 1964]:

Smokers Nonsmokers Odds Ratio Difference

Cancer of the lung 48.33 4.49 10.8 43.84
Coronary artery disease  294.67 169.54 1.7 125.13

The point is that although the risk w is increased much more for cancer, the added number
dying of coronary artery disease is higher, and in some sense smoking has a greater effect in
this case.

6.4 Mantel-Haenszel Test for Association

The chi-square test of association given in conjunction with the Mantel-Haenszel test discussed
in Section 6.3.5 arises from the approach of the section by choosing a; and s; appropriately
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[Fleiss, 1981]. The corresponding chi-square test for homogeneity does not make sense and
should not be used. Mantel et al. [1977] give the problems associated with using this approach
to look at homogeneity.

6.5 Matched Pair Studies

One of the difficult aspects in the design and execution of matched pair studies is to decide
on the matching variables, and then to find matches to the degree desired. In practice, many
decisions are made for logistic and monetary reasons; these factors are not discussed here. The
primary purpose of matching is to have a valid comparison. Variables are matched to increase
the validity of the comparison. Inappropriate matching can hurt the statistical power of the
comparison. Breslow and Day [1980] and Miettinen [1970] give some fundamental background.
Fisher and Patil [1974] further elucidate the matter (see also Problem 6.30).

6.6 More on the Chi-Square Goodness-of-Fit Test

The goodness-of-fit test as presented in this chapter did not mention some of the subtleties
associated with the subject. A few arcane points, with appropriate references, are given in
this note.

1. In Fact 4, the estimate used should be maximum likelihood estimates or equivalent esti-
mates [Chernoff and Lehmann, 1954].

2. The initial chi-square limit theorems were proved for fixed cell boundaries. Limiting
theorems where the boundaries were random (depending on the data) were proved later
[Kendall and Stuart, 1967, Secs. 30.20 and 30.21].

3. The number of cells to be used (as a function of the sample size) has its own literature.
More detail is given in Kendall and Stuart [1967, Secs. 30.28 to 30.30]. The recommen-
dations for k in the present book are based on this material.

6.7 Predictive Value of a Positive Test

The predictive value of a positive test, PV*, is related to the prevalence (PREV), sensitivity
(SENS), and specificity (SPEC) of a test by the following equation:

1
1+ [(1 — spEC)/sENs] [(1 — PREV)/PREV]

PVT =

Here PREV, SENS, and SPEC, are on a scale of 0 to 1 of proportions instead of percentages.
If we define logit(p) = log[p/(1 — p)], the predictive value of a positive test is related very
simply to the prevalence as follows:

SENS

R — logit(PREV
1 —SPEC)+ ogit( )

logit[PV*] = log (
This is a very informative formula. For rare diseases (i.e., low prevalence), the term “logit
(PREV)” will dominate the predictive value of a positive test. So no matter what the sensitivity
or specificity of a test, the predictive value will be low.

6.8 Confidence Intervals for a Poisson Mean

Many software packages now provide confidence intervals for the mean of a Poisson distribution.
There are two formulas: an approximate one that can be done by hand, and a more complex
exact formula. The approximate formula uses the following steps. Given a Poisson variable Y:
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1. Take /Y.
2. Add and subtract 1.

3. Square the result [(+/Y — 1%, (VY + 1)2].

This formula is reasonably accurate for ¥ > 5. See also Note 6.9 for a simple confidence interval
when Y = 0. The exact formula uses the relationship between the Poisson and x2 distributions
to give the confidence interval

1 2 1 2
EXa/z(zx), 5)(170[/2(235 +2)

where X(f /2(2x) is the /2 percentile of the x? distribution with 2x degrees of freedom.

6.9 Rule of Threes

An upper 90% confidence bound for a Poisson random variable with observed values 0 is, to
a very good approximation, 3. This has led to the rule of threes, which states that if in n trials
zero events of interest are observed, a 95% confidence bound on the underlying rate is 3/n. For
a fuller discussion, see Hanley and Lippman-Hard [1983]. See also Problem 6.29.

PROBLEMS

6.1 In a randomized trial of surgical and medical treatment a clinic finds eight of nine
patients randomized to medicine. They complain that the randomization must not be
working; that is, 7 cannot be 1/2.

(a) Is their argument reasonable from their point of view?
*(b) With 15 clinics in the trial, what is the probability that all 15 clinics have fewer
than eight people randomized to each treatment, of the first nine people random-
ized? Assume independent binomial distributions with 7 = 1/2 at each site.

6.2 In a dietary study, 14 of 20 subjects lost weight. If weight is assumed to fluctuate by
chance, with probability 1/2 of losing weight, what is the exact two-sided p-value for
testing the null hypothesis & = 1/2?

6.3 Edwards and Fraccaro [1960] present Swedish data about the gender of a child and the
parity. These data are:

Order of Birth

Gender 1 2 3 4 5 6 7 Total

Males 2846 2554 2162 1667 1341 987 666 12,223
Females 2631 2361 1996 1676 1230 914 668 11,476

Total 5477 4915 4158 3343 2571 1901 1334 23,699

(a) Find the p-value for testing the hypothesis that a birth is equally likely to be of
either gender using the combined data and binomial assumptions.
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(b) Construct a 90% confidence interval for the probability that a birth is a female
child.

(¢) Repeat parts (a) and (b) using only the data for birth order 6.

Ounsted [1953] presents data about cases with convulsive disorders. Among the cases
there were 82 females and 118 males. At the 5% significance level, test the hypothesis
that a case is equally likely to be of either gender. The siblings of the cases were
121 females and 156 males. Test at the 10% significance level the hypothesis that the
siblings represent 53% or more male births.

Smith et al. [1976] report data on ovarian carcinoma (cancer of the ovaries). People
had different numbers of courses of chemotherapy. The five-year survival data for those
with 14 and 10 or more courses of chemotherapy are:

Five-Year Status

Courses Dead Alive

1-4 21 2
>10 2 8

Using Fisher’s exact test, is there a statistically significant association (p < 0.05) in
this table? (In this problem and the next, you will need to compute the hypergeometric
probabilities using the results of Problem 6.26.)

Borer et al. [1980] study 45 patients following an acute myocardial infarction (heart
attack). They measure the ejection fraction (EF), the percent of the blood pumped from
the left ventricle (the pumping chamber of the heart) during a heart beat. A low EF
indicates damaged or dead heart muscle (myocardium). During follow-up, four patients
died. Dividing EF into low (<35%) and high (>35%) EF groups gave the following
table:

Vital Status

EF Dead Alive

<35% 4 9
>35% 0 32

Is there reason to suspect, at a 0.05 significance level, that death is more likely in the
low EF group? Use a one-sided p-value for your answer, since biological plausibility
(and prior literature) indicates that low EF is a risk factor for mortality.

Using the data of Problem 6.4, test the hypothesis that the proportions of male births
among those with convulsive disorders and among their siblings are the same.

Lawson and Jick [1976] compare drug prescription in the United States and Scotland.

(a) In patients with congestive heart failure, two or more drugs were prescribed in
257 of 437 U.S. patients. In Scotland, 39 of 179 patients had two or more drugs
prescribed. Test the null hypothesis of equal proportions giving the resulting p-
value. Construct a 95% confidence interval for the difference in proportions.
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(b) Patients with dehydration received two or more drugs in 55 of 74 Scottish
cases as compared to 255 of 536 in the United States. Answer the questions
of part (a).

A randomized study among patients with angina (heart chest pain) is to be conducted
with five-year follow-up. Patients are to be randomized to medical and surgical treat-
ment. Suppose that the estimated five-year medical mortality is 10% and it is hoped
that the surgical mortality will be only half as much (5%) or less. If a test of binomial
proportions at the 5% significance level is to be performed, and we want to be 90%
certain of detecting a difference of 5% or more, what sample sizes are needed for the
two (equal-sized) groups?

A cancer with poor prognosis, a three-year mortality of 85%, is studied. A new mode
of chemotherapy is to be evaluated. Suppose that when testing at the 0.10 significance
level, one wishes to be 95% certain of detecting a difference if survival has been
increased to 50% or more. The randomized clinical trial will have equal numbers of
people in each group. How many patients should be randomized?

Comstock and Partridge [1972] show data giving an association between church atten-
dance and health. From the data of Example 6.17, which were collected from a prospec-
tive study:

(a) Compute the relative risk of an arteriosclerotic death in the three-year follow-up
period if one usually attends church less than once a week as compared to once
a week or more.

(b) Compute the odds ratio and a 95% confidence interval.

(¢c) Find the percent error of the odds ratio as an approximation to the relative risk;
that is, compute 100(OR — RR)/RR.

(d) The data in this population on deaths from cirrhosis of the liver are:

Usual Church Cirrhosis Fatality?

Attendance Yes No
>1 per week 5 24,240
<1 per week 25 30,578

Repeat parts (a), (b), and (c) for these data.

Peterson et al. [1979] studied the patterns of infant deaths (especially SIDS) in King
County, Washington during the years 1969-1977. They compared the SIDS deaths with
a 1% sample of all births during the time period specified. Tables relating the occurrence
of SIDS with maternal age less than or equal to 19 years of age, and to birth order
greater than 1, follow for those with single births.

Child Child

Birth Order SIDS Control | Maternal Age SIDS Control

>1 201 689 <19 76 164
=1 92 626 >19 217 1151
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Child

SIDS Control

Birth order >1 and maternal age <19 26 17
Birth order =1 or maternal age >19 267 1298
Birth order >1 and maternal age <19 26 17
Birth order =1 and maternal age >19 42 479

(a) Compute the odds ratios and 95% confidence intervals for the data in these tables.

(b) Which pair of entries in the second table do you think best reflects the risk of
both risk factors at once? Why? (There is not a definitely correct answer.)

*(c) The control data represent a 1% sample of the population data. Knowing this,
how would you estimate the relative risk directly?

6.13 Rosenberg et al. [1980] studied the relationship between coffee drinking and myocar-
dial infarction in young women aged 30-49 years. This retrospective study included
487 cases hospitalized for the occurrence of a myocardial infarction (MI). Nine hundred
eighty controls hospitalized for an acute condition (trauma, acute cholecystitis, acute
respiratory diseases, and appendicitis) were selected. Data for consumption of five or
more cups of coffee containing caffeine were:

Cups
per Day | MI  Control

>5 152 183
<5 335 797

Compute the odds ratio of a MI for heavy (=5 cups per day) coffee drinkers vs.
nonheavy coffee drinkers. Find the 90% confidence interval for the odds ratio.

6.14 The data of Problem 6.13 were considered to be possibly confounded with smoking.
The 2 x 2 tables by smoking status, in cigarettes per day, are displayed in Table 6.11.

(a) Compute the Mantel-Haenszel estimate of the odds ratio and the chi-square statis-
tic for association. Would you reject the null hypothesis of no association between
coffee drinking and myocardial infarction at the 5% significance level?

(b) Using the log odds ratio as the measure of association in each table, compute
the chi-square statistic for association. Find the estimated overall odds ratio and
a 95% confidence interval for this quantity.

6.15 The paper of Remein and Wilkerson [1961] considers screening tests for diabetes. The
Somogyi—Nelson (venous) blood test (data at 1 hour after a test meal and using 130
mg per 100 mL as the blood sugar cutoff level) gives the following table:

Test Diabetic  Nondiabetic  Total

+ 59 48 107
- 11 462 473

Total 70 510 580
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Table 6.11 2 x 2 Tables for Problem 6.14

Cups per Day MI  Control
Never smoked

>5 7 31

<5 55 269
Former smoker

>5 7 18

<5 20 112
1-14 cigarettes per day

>5 7 24

<5 33 114
15-24 cigarettes per day

>5 40 45

<5 88 172
25-34 cigarettes per day

>5 34 24

<5 50 55
35-44 cigarettes per day

>5 27 24

<5 55 58
45+ cigarettes per day

>5 30 17

<5 34 17

(a) Compute the sensitivity, specificity, predictive value of a positive test, and pre-
dictive value of a negative test.

(b) Using the sensitivity and specificity of the test as given in part (a), plot curves
of the predictive values of the test vs. the percent of the population with dia-
betes (0 to 100%). The first curve will give the probability of diabetes given
a positive test. The second curve will give the probability of diabetes given a
negative test.

Remein and Wilkerson [1961] present tables showing the trade-off between sensitivity
and specificity that arises by changing the cutoff value for a positive test. For blood
samples collected 1 hour after a test meal, three different blood tests gave the data
given in Table 6.12.

(a) Plot three curves, one for each testing method, on the same graph. Let the vertical
axis be the sensitivity and the horizontal axis be (1 — specificity) of the test. The
curves are generated by the changing cutoff values.

(b) Which test, if any, looks most promising? Why? (See also Note 6.7)

Data of Sartwell et al. [1969] that examine the relationship between thromboembolism
and oral contraceptive use are presented below for several subsets of the population.
For each subset:

(a) Perform McNemar’s test for a case—control difference (5% significance level).
(b) Estimate the relative risk.
(¢c) Find an appropriate 90% confidence interval for the relative risk.
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Table 6.12 Blood Sugar Data for Problem 6.16

Type of Test

Somogyi—Nelson Folin—-Wu Anthrone
Blood Sugar

(mg/100 mL) SENS  SPEC  SENS SPEC SENS SPEC

70 — — 100.0 8.2 100.0 2.7

80 — 1.6 97.1 22.4  100.0 9.4

90 100.0 8.8 97.1 39.0  100.0 22.4
100 98.6 21.4 95.7 57.3 98.6 37.3
110 98.6 38.4 92.9 70.6 94.3 54.3
120 97.1 55.9 88.6 83.3 88.6 67.1
130 92.9 70.2 78.6 90.6 81.4 80.6
140 85.7 81.4 68.6 95.1 74.3 88.2
150 80.0 90.4 57.1 97.8 64.3 92.7
160 74.3 94.3 52.9 99.4 58.6 96.3
170 61.4 97.8 47.1 99.6 51.4 98.6
180 52.9 99.0 40.0 99.8 45.7 99.2
190 44.3 99.8 343 100.0 40.0 99.8
200 40.0 99.8 28.6  100.0 35.7 99.8

For nonwhites:

Case

Control Yes No

Yes 3 3
No 11 9
For married:
Case

Control Yes No

Yes 8§ 10
No 41 46
and for ages 15-29:
Case

Control Yes No

Yes 5 33
No 7 57

6.18 Janerich et al. [1980] compared oral contraceptive use among mothers of malformed
infants and matched controls who gave birth to healthy children. The controls were
matched for maternal age and race of the mother. For each of the following, estimate
the odds ratio and form a 90% confidence interval for the odds ratio.
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(a) Women who conceived while using the pill or immediately following pill use.

Case

Control  Yes No

Yes 1 33
No 49 632

(b) Women who experienced at least one complete pill-free menstrual period prior to
conception.

Case

Control  Yes No

Yes 38 105
No 105 467

(c) Cases restricted to major structural anatomical malformations; use of oral con-

traceptives after the last menstrual period or in the menstrual cycle prior to
conception.

Case

Control  Yes No

Yes 0 21
No 45 470

(d) As in part (c) but restricted to mothers of age 30 or older.

Case

Control  Yes No

Yes 0 1
No 6 103

6.19 Robinette et al. [1980] studied the effects on health of occupational exposure to micro-
wave radiation (radar). The study looked at groups of enlisted naval personnel who were
enrolled during the Korean War period. Find 95% confidence intervals for the percent

of men dying of various causes, as given in the data below. Deaths were recorded that
occurred during 1950-1974.

(a) Eight of 1412 aviation electronics technicians died of malignant neoplasms.

(b) Six of the 1412 aviation electronics technicians died of suicide, homicide, or other
trauma.

(¢) Nineteen of 10,116 radarmen died by suicide.
(d) Sixteen of 3298 fire control technicians died of malignant neoplasms.
(e) Three of 9253 radiomen died of infective and parasitic disease.
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(f) None of 1412 aviation electronics technicians died of infective and parasitic dis-
ease.

The following data are also from Robinette et al. [1980]. Find 95% confidence intervals
for the population percent dying based on these data: (1) 199 of 13,078 electronics
technicians died of disease; (2) 100 of 13,078 electronics technicians died of circulatory
disease; (3) 308 of 10,116 radarmen died (of any cause); (4) 441 of 13,078 electronics
technicians died (of any cause); (5) 103 of 10,116 radarmen died of an accidental
death.

(a) Use the normal approximation to the Poisson distribution (which is approximating
a binomial distribution).

(b) Use the large-sample binomial confidence intervals (of Section 6.2.6). Do you
think the intervals are similar to those calculated in part (a)?

Infant deaths in King County, Washington were grouped by season of the year. The
number of deaths by season, for selected causes of death, are listed in Table 6.13.

Table 6.13 Death Data for Problem 6.21

Season

Winter  Spring  Summer  Autumn

Asphyxia 50 48 46 34
Immaturity 30 40 36 35
Congenital malformations 95 93 88 83
Infection 40 19 40 43
Sudden infant death syndrome 78 71 87 86

(a) At the 5% significance level, test the hypothesis that SIDS deaths are uniformly
(p = 1/4) spread among the seasons.

(b) At the 10% significance level, test the hypothesis that the deaths due to infection
are uniformly spread among the seasons.

(c) What can you say about the p-value for testing that asphyxia deaths are spread
uniformly among seasons? Immaturity deaths?

Fisher [1958] (after [Carver, 1927]) provided the following data on 3839 seedlings that
were progeny of self-fertilized heterozygotes (each seedling can be classified as either
starchy or sugary and as either green or white):

Number of Seedlings Green White Total

Starchy 1997 906 2903
Surgary 904 32 936
Total 2901 938 3839

(a) On the assumption that the green and starchy genes are dominant and that the
factors are independent, show that by Mendel’s law that the ratio of expected
frequencies (starchy green, starchy white, sugary green, sugary white) should be
9:3:3:1.
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Calculate the expected frequencies under the hypothesis that Mendel’s law holds
and assuming 3839 seedlings.

The data are multinomial with parameters my, 72, 73, and w4, say. What does
Mendel’s law imply about the relationships among the parameters?

Test the goodness of fit.

6.23 Fisher [1958] presented data of Geissler [1889] on the number of male births in German
families with eight offspring. One model that might be considered for these data is the
binomial distribution. This problem requires a goodness-of-fit test.

(a)

(b)

(c)

(d)

*(e)

*6.24 (a)

(b)

(¢)

Estimate 7, the probability that a birth is male. This is done by using the estimate
p = (total number of male births)/(total number of births). The data are given in
Table 3.10.

Using the p of part (a), find the binomial probabilities for number of boys = 0,
1,2,3,4,5, 6,7, and 8. Estimate the expected number of observations in each
cell if the binomial distribution is correct.

Compute the X2 value.

The X? distribution lies between chi-square distributions with what two degrees
of freedom? (Refer to Section 6.6.4)

Test the goodness of fit by finding the two critical values of part (d). What can
you say about the p-value for the goodness-of-fit test?

Let R(n) be the number of ways to arrange n distinct objects in a row. Show that
R(n)=n!=1-2-3....-n. By definition, R(0) = 1. Hint: Clearly, R(1) = 1.
Use mathematical induction. That is, show that if R(n — 1) = (n — 1)!, then
R(n) = n!. This would show that for all positive integers n, R(n) = n!. Why?
[To show that R(n) = n!, suppose that R(n — 1) = (n — 1)!. Argue that you
may choose any of the n objects for the first position. For each such choice,
the remaining n — 1 objects may be arranged in R(n — 1) = (n — 1)! different
ways.]

Show that the number of ways to select k objects from n objects, denoted by

Z (the binomial coefficient), is n!/((n — k)! k!). Hint: We will choose
the k objects by arranging the n objects in a row; the first k objects will be
the ones we select. There are R(n) ways to do this. When we do this, we
get the same k objects many times. There are R(k) ways to arrange the same
k objects in the first k& positions. For each such arrangement, the other n — k
objects may be arranged in R(n — k) ways. The number of ways to arrange
these objects is R(k) R(n — k). Since each of the k objects is counted R(k)R(n —
k) times in the R(n) arrangements, the number of different ways to select k
objects is

R(n) _ n!
RU(R(m —k) ~ k! (n—k)!

from part (a). Then check that

n n
(+)=(5)-
Consider the binomial situation: n independent trials each with probability = of
success. Show that the probability of k successes
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blk;n, ) = ( ’]Z )nk(l — )k

k
trials that give a success. Using the independence of the trials, argue that the
probability of the k trials being a success is 7% (1 — )"k,
(d) Compute from the definition of b(k; n, w): (i) b(3;5,0.5); (ii) b(3; 3, 0.3); (iii)
b(2;4,0.2); (iv) b(1;3,0.7); (v) b(4; 6,0.1).

Hint: Think of the n trials as ordered. There are ( " ) ways to choose the k

In Section 6.2.3 we presented procedures for two-sided hypothesis tests with the bino-
mial distribution. This problem deals with one-sided tests. We present the procedures
for a test of Hy : m > my vs. Hy : m < mp. [The same procedures would be used for
Hy:m =movs. Hy : m < mp. For Hy : m < mg vs. Hs : ™ > mg, the procedure would
be modified (see below).]

Procedure A: To construct a significance test of Hy : @ > o vs. H, : m < mp at
significance level a:

(a) LetY be binomial n, mp, and p = Y /n. Find the largest ¢ such that P[p < c] < «.
(b) Compute the actual significance level of the test as P[p < c].
(c) Observe p. Reject Hy if p < c.

Procedure B: The p-value for the test if we observe p is P[p < p], where p is the
fixed observed value and p equals Y /n, where Y is binomial n, 7.

(a) In Problem 6.2, let = be the probability of losing weight. (i) Find the critical
value c for testing Hy : w > 1/2 vs. Hy : w < 1/2 at the 10% significance level.
(ii) Find the one-sided p-value for the data of Problem 6.2.

(b) Modify procedures A and B for the hypotheses Hy : 7 < mo vs. Hy : w > mp.

Using the terminology and notation of Section 6.3.1, we consider proportions of success
from two samples of size n1. and nj.. Suppose that we are told that there are n.; total
successes. That is, we observe the following:

Success Failures

Sample 1 ? ni.
Sample 2 n.
n.q n.n n..

If both populations are equally likely to have a success, what can we say about
n11, the number of successes in population 1, which goes in the cell with the question
mark?

Show that

P[n11=k]=< " )( sk )/( " )

for k < ni., k < n.1, and n.; — k < ny.. Note: P[n1; = k], which has the param-
eters nj., ny., and n.1, is called a hypergeometric probability. Hint: As suggested in
Section 6.3.1, think of each trial (in sample 1 or 2) as a ball [purple (n1.) or gold (n3.)].
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Since successes are equally likely in either population, any ball is as likely as any other
to be drawn in the n.; successes. All subsets of size n.; are equally likely, so the prob-
ability of k successes is the number of subsets with k purple balls divided by the total

number of subsets of size n.;. Argue that the first number is ]i " 2 k )
.1 —_

and the second is ( - )
n.j

6.27 This problem gives more practice in finding the sample sizes needed to test for a
difference in two binomial populations.

(a) Use Figure 6.2 to find approximate two-sided sample sizes per group for « = 0.05
and B = 0.10 when (i) P; = 0.5, P, = 0.6; (ii)) P; = 0.20, P, = 0.10; (iii)
Py =0.70, P, = 0.90.

(b) For each of the following, find one-sided sample sizes per group as needed from
the formula of Section 6.3.3. (i) « = 0.05,8 = 0.10, P = 0.25, P, = 0.10;
(i) @ = 0.05, 8 = 0.05, P; = 0.60, P, = 0.50; (iii) « = 0.01, 8 = 0.01, P| =
0.15, P, = 0.05; (iv) @ = 0.01, 8 = 0.05, P; = 0.85, P, = 0.75. To test m; Vvs.
17, we need the same sample size as we would to test 1 — my vs. 1 — . Why?

6.28 You are examined by an excellent screening test (sensitivity and specificity of 99%) for
a rare disease (0.1% or 1/1000 of the population). Unfortunately, the test is positive.
What is the probability that you have the disease?

*6.29 (a) Derive the rule of threes defined in Note 6.9.
(b) Can you find a similar constant to set up a 99% confidence interval?

*6.30 Consider the matched pair data of Problem 6.17: What null hypothesis does the usual
chi-square test for a 2 x 2 table test on these data? What would you decide about the
matching if this chi-square was not significant (e.g., the “married” table)?
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CHAPTER 7

Categorical Data: Contingency Tables

7.1 INTRODUCTION

In Chapter 6, discrete variables came up by counting the number of times that specific outcomes
occurred. In looking at the presence or absence of a risk factor and a disease, odds ratio and
relative risk were introduced. In doing this, we looked at the relationship between two discrete
variables; each variable took on one of two possible states (i.e., risk factor present or absent
and disease present or absent). In this chapter we show how to analyze more general discrete
data. Two types of generality are presented.

The first generalization considers two jointly distributed discrete variables. Each variable
may take on more than two possible values. Some examples of discrete variables with three
or more possible values might be: smoking status (which might take on the values “never
smoked,” “former smoker,” and “current smoker”); employment status (which could be coded
as “full-time,” “part-time,” “unemployed,” “unable to work due to medical reason,” “retired,”
“quit,” and “other”); and clinical judgment of improvement (classified into categories of “con-
siderable improvement,” “slight improvement,” “no change,” “slight worsening,” “considerable
worsening,” and “death”).

The second generalization allows us to consider three or more discrete variables (rather than
just two) at the same time. For example, method of treatment, gender, and employment status
may be analyzed jointly. With three or more variables to investigate, it becomes difficult to
obtain a “feeling” for the interrelationships among the variables. If the data fit a relatively
simple mathematical model, our understanding of the data may be greatly increased.

In this chapter, our first multivariate statistical model is encountered. The model is the log-
linear model for multivariate discrete data. The remainder of the book depends on a variety of
models for analyzing data; this chapter is an exciting, important, and challenging introduction
to such models!

EEINT3 EEINT3

2 2 < 2 <«

7.2 TWO-WAY CONTINGENCY TABLES

Let two or more discrete variables be measured on each unit in an experiment or observational
study. In this chapter, methods of examining the relationship among the variables are studied.
In most of the chapter we study the relationship of two discrete variables. In this case we count
the number of occurrences of each pair of possibilities and enter them in a table. Such tables
are called contingency tables. Example 7.1 presents two contingency tables.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright © 2004 John Wiley & Sons, Inc.
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Example 7.1. In 1962, Wangensteen et al., published a paper in the Journal of the Amer-
ican Medical Association advocating gastric freezing. A balloon was lowered into a subject’s
stomach, and coolant at a temperature of —17 to —20°C was introduced through tubing con-
nected to the balloon. Freezing was continued for approximately 1 hour. The rationale was that
gastric digestion could be interrupted and it was thought that a duodenal ulcer might heal if
treatment could be continued over a period of time. The authors advanced three reasons for the
interruption of gastric digestion: (1) interruption of vagal secretory responses; (2) “rendering
of the central mucosa nonresponsive to food ingestion ...”; and (3) “impairing the capac-
ity of the parietal cells to secrete acid and the chief cells to secrete pepsin.” Table 7.1 was
presented as evidence for the effectiveness of gastric freezing. It shows a decrease in acid
secretion.

On the basis of this table and other data, the authors state: “These data provide convincing
objective evidence of significant decreases in gastric secretory responses attending effective
gastric freezing” and conclude: “When profound gastric hypothermia is employed with resultant
freezing of the gastric mucosa, the method becomes a useful agent in the control of many of the
manifestations of peptic ulcer diathesis. Symptomatic relief is the rule, followed quite regularly
by x-ray evidence of healing of duodenal ulcer craters and evidence of effective depression of
gastric secretory responses.” Time [1962] reported that “all [the patients’] ulcers healed within
two to six weeks.”

However, careful studies attempting to confirm the foregoing conclusion failed. Two studies in
particular failed to confirm the evidence, one by Hitchcock et al. [1966], the other by Ruffin et al.
[1969]. The latter study used an elaborate sham procedure (control) to simulate gastric freezing,
to the extent that the tube entering the patient’s mouth was cooled to the same temperature as in
the actual procedure, but the coolant entering the stomach was at room temperature, so that no
freezing took place. The authors defined an endpoint to have occurred if one of the following
criteria was met: “perforation; ulcer pain requiring hospitalization for relief; obstruction, partial
or complete, two or more weeks after hyperthermia; hemorrhage, surgery for ulcer; repeat
hypothermia; or x-ray therapy to the stomach.”

Several institutions cooperated in the study, and to ensure objectivity and equal numbers,
random allocations to treatment and sham were balanced within groups of eight. At the termina-
tion of the study, patients were classified as in Table 7.2. The authors conclude: “The results of

Table 7.1 Gastric Response of 10 Patients with Duodenal Ulcer Whose Stomachs Were Frozen at
—17 to —20°C for 1 Hour

Average Percent Decrease in HCI
after Gastric Freezing

Patients
with Decrease in Overnight Peptone
Patients Free HCI Secretion Stimulation Insulin
10 104 87 51 71

Source: Data from Wangensteen et al. [1962].
“All patients, except one, had at least a 50% decrease in free HCI in overnight secretion.

Table 7.2 Causes of Endpoints

With With With Not Reaching
Group Patients Hemorrhage Operation Hospitalization Endpoint
F (freeze) 69 9 17 9 34
S (sham) 68 9 14 7 38

Source: Data from Ruffin et al. [1969].
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Table 7.3 Contingency Table
for Gastric Freezing Data

J
i 1 2 c
1 nii ni i nic
2 nai nn e nae
r nr1 ny2 Rye

this study demonstrate conclusively that the ‘freezing’ procedure was not better than the sham
in the treatment of duodenal ulcer, confirming the work of others. ... It is reasonable to assume
that the relief of pain and subjective improvement reported by early investigators was probably
due to the psychological effect of the procedure.”

Contingency tables set up from two variables are called rwo-way tables. Let the variable cor-
responding to rows have r (for “row”) possible outcomes, which we index by i (i = 1,2,...,r).
Let the variables corresponding to the column headings have ¢ (for “column”) possible states
indexed by j (j =1,2,...,c¢). One speaks of an r x ¢ contingency table. Let n;; be the num-
ber of observations corresponding to the ith state of the row variable and the jth state of the
column variable. In the example above, nj; = 9,n1p = 17,113 = 9, n14 = 34,021 =9, n =
14, np3 = 7, and ny4 = 38. In general, the data are presented as shown in Table 7.3. Such tables
usually arise in one of two ways:

1. A sample of observations is taken. On each unit we observe the values of two traits. Let
7;j be the probability that the row variable takes on level i and the column variable takes
on level j. Since one of the combinations must occur,

ZZ]T,‘j:l (1)

i=1 j=1

2. Each row corresponds to a sample from a different population. In this case, let 7;; be the
probability the column variable takes on state j when sampling from the ith population.
Thus, for each i,

Z]T,'j =1 (2)
j=1

If the samples correspond to the column variable, the 7;; are the probabilities that the
row variable takes on state i when sampling from population j. In this circumstance, for
each j,

Y omij=1 3)

i=1

Table 7.2 comes from the second model since the treatment is assigned by the experimenter;
it is not a trait of the experimental unit. Examples for the first model are given below.



TWO-WAY CONTINGENCY TABLES 211

The usual null hypothesis in a model 1 situation is that of independence of row and col-
umn variables. That is (assuming row variable = i and column variable = j), P[i and j] =
Pli]P[j],

Hy: mjj = m;.m.

In the model 2 situation, suppose that the row variable identifies the population. The usual
null hypothesis is that all » populations have the same probabilities of taking on each value of
the column variable. That is, for any two rows, denoted by i and i’, say, and all j,

Hy: mtjj = 7y

If one of these hypotheses holds, we say that there is no association; otherwise, the table is said
to have association between the categorical variables.

We will use the following notation for the sum over the elements of a row and/or column:
n;. is the sum of the elements of the ith row; n.; is the sum of the elements of the jth column:

c r r c
ni~=Znijv n.j=Zn,-j, n:Z E njj
j=1 i=1

i=1 j=1

It is shown in Note 7.1 that under either model 1 or model 2, the null hypothesis is reasonably
tested by comparing n;; with
n;.n. j
n..

The latter is the value expected in the ijth cell given the observed marginal configuration and
assuming either of the null hypotheses under model 1 or model 2. This is shown as

ni. =69
ny. = 68

n1=9 np=17 ni3=9 nu=34
1 =9 npn=14 ny =7 ny =38

n.| = 18 n.,p = 31 n.; = 16 n.4 = 72 ‘ n.. =137

Under the null hypothesis, the table of expected values n;.n.;/n.. is

69 x 18/137 69 x 31/137 69 x 16/137 69 x 72/137
68 x 18/137 68 x 31/137 68 x 16/137 68 x 72/137

or

9.07 15.61 8.06 36.26
893 1539 794 3574

It is a remarkable fact that both null hypotheses above may be tested by the x2 statistic,
r c 2
(nij —nj.n.j/n..)
X% = e
; ; ni.n.j/n..

Note that n;; is the observed cell entry; n;.n.;/n.. is the expected cell entry, so this statistic
may be remembered as

X2 — Z (observed — expected)2
N expected
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For example, the array above gives

2o O- 9.07)2  (17—15.61)> (9 —8.06)°

9.07 15.61 8.06
(34 —36.26)2 (9 —18.93)2 (14 —15.39)2
36.26 8.93 15.39
7—7.94)2 (38 —35.76)2
( ) ¢ )" _ 0.752
7.94 35.76

Under the null hypothesis, the X? statistic has approximately a x 2 distribution with (r —1)(c—1)
degrees of freedom. This approximation is for large samples and is appropriate when all of
the expected values, n;.n.j/n.., are 5 or greater. There is some evidence to indicate that the
approximation is valid if all the expected values, except possibly one, are 5 or greater.

For our example, the degrees of freedom for the example are (2—1)(4—1) = 3. The rejection
region is for X2 too large. The 0.05 critical value is 7.81. As 0.752 < 7.81, we do not reject
the null hypothesis at the 0.05 significance level.

Example 7.2. Robertson [1975] examined seat belt use in automobiles with starter interlock
and buzzer/light systems. The use or nonuse of safety belts by drivers in their vehicles was
observed at 138 sites in Baltimore, Maryland; Houston, Texas; Los Angeles, California; the
New Jersey suburbs; New York City; Richmond, Virginia; and Washington, DC during late
1973 and early 1974. The sites were such that observers could see whether or not seat belts
were being used. The sites were freeway entrances and exits, traffic-jam areas, and other points
where vehicles usually slowed to less than 15 miles per hour. The observers dictated onto tape
the gender, estimated age, and racial appearance of the driver of the approaching car; as the
vehicles slowed alongside, the observer recorded whether or not the lap belt and/or shoulder
belt was in use, not in use, or could not be seen. The license plate numbers were subsequently
sent to the appropriate motor vehicle administration, where they were matched to records from
which the manufacturer and year were determined. In the 1973 models, a buzzer/light system
came on when the seat belt was not being used. The buzzer was activated for at least 1 minute
when the driver’s seat was occupied, the ignition switch was on, the transmission gear selector
was in a forward position, and the driver’s lap belt was not extended at least 4 inches from
its normal resting position. Effective on August 15, 1973, a federal standard required that the
automobile could be started only under certain conditions. In this case, when the driver was
seated, the belts had to be extended more than 4 inches from their normally stored position
and/or latched. Robertson states that as a result of the strong negative public reaction to the
interlock system, federal law has banned the interlock system. Data on the buzzer/light-equipped
models and interlock-equipped models are given in Table 7.4. As can be seen from the table,
column percentages were presented to aid assimilation of the information in the table.

Table 7.4 Robertson [1975] Seat Belt Data

1973 Models 1974 Models
(Buzzer/Light) (Interlock)
Belt Use %  Number %  Number Total
Lap and shoulder 7 432 48 1007 1439
Lap only 21 1262 11 227 1489
None 72 4257 41 867 5124

Total 100 5951 100 2101 8052
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Percentages in two-way contingency tables are useful in aiding visual comprehension of the
contents. There are three types of percent tables:

1. Column percent tables give the percentages for each column (the columns add to 100%,
except possibly for rounding errors). This is best for comparing the distributions of dif-
ferent columns.

2. Row percent tables give the percentages for each row (the rows add to 100%). This is
best for comparing the distributions of different rows.

3. The total percent table gives percentages, so that all the entries in a table add to 100%.
This aids investigation of the proportions in each combination.

The column percentages in Table 7.4 facilitate comparison of seat belt use in the 1973
buzzer/light models and the 1974 interlock models. They illustrate that there are strategies for
getting around the interlock system, such as disabling it, connecting the seat belt and leaving it
connected on the seat, as well as possible other strategies, so that even with an interlock system,
not everyone uses it. The computed value of the chi-square statistic for this table is 1751.6 with
two degrees of freedom. The p-value is effectively zero, as shown in Table A.3 in the Appendix.

Given that we have a statistically significant association, the next question that arises is: To
what may we attribute this association? To determine why the association occurs, it is useful
to have an idea of which entries in the table differ more than would be expected by chance
from their value under the null hypothesis of no association. Under the null hypothesis, for
each entry in the table, the following adjusted residual value is approximately distributed as a
standard normal distribution. The term residual is used since it looks at the difference between
the observed value and the value expected under the null hypothesis. This difference is then
standardized by its standard error,

nij — (ni-n.j/n..)

Zij =
\/ni.n.j/n.. (I —nifn.) (1= n.j/n..)

C))

For example, for the (1, 1) entry in the table, a standardized residual, is given by

(432 — 1439 x 5951/8052)
1439(5951) | 1439 ! 5951
8052 ( 8052) ( 8052)
The matrix of the residual values observed with the corresponding normal probability p-values
is given in Table 7.5. Note that the values add to zero for the residuals across each row. This
occurs because there are only two columns. The adjusted residual values observed are so far
from zero that the normal p-values are miniscule.

In general, there is a problem in looking at a contingency table with many cells. Because
there are a large number of residual values in the table, it may be that one or more of them differs
by chance from zero at the 5% significance level. Even under the null hypothesis, because of the
many possibilities examined, this would occur much more than 5% of the time. One conservative
way to deal with this problem is to multiply the p-values by the number of rows minus one
and the number of columns minus one. If the corresponding p-value is less than 0.05, one
can conclude that the entry is different from that expected by the null hypothesis at the 5%
significance level even after looking at all of the different entries. (This problem of looking at
many possibilities, called the multiple comparison problem, is dealt with in considerable detail
in Chapter 12.) For this example, even after multiplying by the number of rows minus one

and the number of columns minus one, all of the entries differ from those expected under the
null hypothesis. Thus, one can conclude, using the sign of the residual to tell us whether the

=41.83
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Table 7.5 Adjusted Residual Values (Example 7.2)

Residual

i (Zij) p-value p-value X (r — 1) x (c — 1)
1 1 —4183 0+ 0+

1 2 41.83 0+ 0+

2 1 1056 3 x 10722 6x 10722

2 2 —1056 3x10722 6x 10722

3 01 2479  9x 10733 2 x 10732

3 2 —2479 9x10753 2 x 10752

percentage is too high or too low, that in the 1973 models there is less lap and shoulder belt
use than in the 1974 models. Further, if we look at the “none” category, there are fewer people
without any belt use in the 1974 interlock models than in the 1973 buzzer/light-equipped models.
One would conclude that the interlock system, although a system disliked by the public, was
successful as a public health measure in increasing the amount of seat belt use.

Suppose that we decide there is an association in a contingency table. We can interpret the
table by using residuals (as we have done above) to help to find out whether particular entries
differ more than expected by chance. Another approach to interpretation is to characterize
numerically the amount of association between the variables, or proportions in different groups,
in the contingency table. To date, no single measure of the amount of association in contingency
tables has gained widespread acceptance. There have been many proposals, all of which have
some merit. Note 7.2 presents some measures of the amount of association.

7.3 CHI-SQUARE TEST FOR TREND IN 2 x k TABLES

There are a variety of techniques for improving the statistical power of x?2 tests. Recall that
power is a function of the alternative hypothesis. One weakness of the chi-square test is that it
is an “omnibus” test; it tests for independence vs. dependence without specifying the nature of
the latter. In some cases, a small subset of alternative hypotheses may be specified to increase
the power of the chi-square test by defining a special test. One such situation occurs in 2 x k
tables when the alternative hypothesis is that there is an ordering in the variable producing the
k categories. For example, exposure categories can be ordered, and the alternative hypothesis
may be that the probability of disease increases with increasing exposure.

In this case the row variable takes on one of two states (say + or — for definiteness). For
each state of the column variable (j = 1,2, ... ,k), let ; be the conditional probability of a
positive response. The test for trend is designed to have statistical power against the alternatives:

H m<m<---<m, with at least one strict inequality

H:m>m > >m, with at least one strict inequality

That is, the alternatives of interest are that the proportion of + responses increases or decreases
with the column variable. For these alternatives to be of interest, the column variable will have
a “natural” ordering. To compute the statistic, a score needs to be assigned to each state j of
the column variable. The scores x; are assigned so that they increase or decrease. Often, the x;
are consecutive integers. The data are laid out as shown in Table 7.6.
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Table 7.6 Scores Assigned to State |

J
i 1 2 o k Total
1+ ny Al s ANy N
2— nyp Ay s N2k N
Total n.g  ng e n.g n..
Score  x X2 ce Xk

Before stating the test, we define some notation. Let

k
nl.Zn.jx]'
[n1x] = anjxj -
J=l1
and
k 2
O n.ixj)
[xz] = Zn.sz- - 72 JJ
J
j=1
and
ni.
pP=—
n..

Then the chi-square test for trend is defined to be

2 [n1x]?
Heend = 2151 p)

and when there is no association, this quantity has approximately a chi-square distribution with
one degree of freedom. [In the terminology of Chapter 9, this is a chi-square test for the slope
of a weighted regression line with dependent variable p; = ny;/n.;, predictor variable x;, and
weights n1;/p(1 — p), where j =1,2,... k]

Example 7.3. For an example of this test, we use data of Maki et al. [1977], relating risk
of catheter-related infection to the duration of catheterization. An infection was considered to
be present if there were 15 or more colonies of microorganisms present in a culture associated
with the withdrawn catheter. A part of the data dealing with the number of positive cultures as
related to duration of catheterization is given in Table 7.7. A somewhat natural set of values
of the scores x; is the duration of catheterization in days. The designation >4 is, somewhat
arbitrarily, scored 4.

Before carrying out the analysis, note that a graph of the proportion of positive cultures vs.
duration such as in the one shown in Figure 7.1 clearly suggests a trend. The general chi-square
test on the 2 x 4 table produces a value of X? = 6.99 with three degrees of freedom and a
significance level of 0.072.
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Table 7.7 Relations of Results of Semiquantitative
Culture and Catheterization

Duration of Catheterization (days)

Culture 1 2 3 >4 Total
Positive® 1% 5 5 14 25
Negative 46 64 39 76 225
Total 47 69 44 90 250

Source: Data from Maki et al. [1977].
“Culture is positive if 15 or more colonies on the primary plate.
" Numbers in the body of the table are the numbers of catheters.
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Figure 7.1 Graph of percentage of cultures positive vs. duration of catheterization. The fractions 1/47,
etc., are the number of positive cultures to the total number of cultures for a particular day. (Data from
Maki et al. [1977]; see Table 7.7.)

To calculate the chi-square test for trend, we calculate the quantities [n1x], [x2], and p as
defined above.

25
ix] = 82— 2O g
250
6772
2 .
— 2159 — 2 = 3256840
Ll 250
25
p=5 =0l (1-p)=09
) x> . 14.32

¥ _ - = 6.98
trend [x2]p(1 —-p) 325.6840(0.1)(0.9)

This statistic has one degree of freedom associated with it, and from the chi-square Table A.3,
it can be seen that 0.005 < p < 0.01; hence there is a significant linear trend.
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Note two things about the chi-square test for trend. First, the degrees of freedom are one,
regardless of how large the value k. Second, the values of the scores chosen (x;) are not too
crucial, and evenly spaced scores will give more statistical power against a trend than will the
usual x? test. The example above indicates one type of contingency table in which ordering is
clear: when the categories result from grouping a continuous variable.

7.4 KAPPA: MEASURING AGREEMENT

It often happens in measuring or categorizing objects that the variability of the measurement
or categorization is investigated. For example, one might have two physicians independently
judge a patient’s status as “improved,” “remained the same,” or “worsened.” A study of psy-
chiatric patients might have two psychiatrists independently classifying patients into diagnostic
categories. When we have two discrete classifications of the same object, we may put the entries
into a two-way square (r = c) contingency table. The chi-square test of this chapter may then
be used to test for association. Usually, when two measurements are taken of the same objects,
there is not much trouble showing association; rather, the concern is to study the degree or
amount of agreement in the association. This section deals with a statistic, kappa (x), designed
for such situations. We will see that the statistic has a nice interpretation; the value of the statistic
can be taken as a measure of the degree of agreement. As we develop this statistic, we shall
illustrate it with the following example.

Example 7.4. Fisher et al. [1982] studied the reproducibility of coronary arteriography. In
the coronary artery surgery study (CASS), coronary arteriography is the key diagnostic proce-
dure. In this procedure, a tube is inserted into the heart and fluid injected that is opaque to
x-rays. By taking x-ray motion pictures, the coronary arteries may be examined for possible
narrowing, or stenosis. The three major arterial systems of the heart were judged with respect
to narrowing. Narrowing was significant if it was 70% or more of the diameter of the artery.
Because the angiographic films are a key diagnostic tool and are important in the decision about
the appropriateness of bypass surgery, the quality of the arteriography was monitored and the
amount of agreement was ascertained.

Table 7.8 presents the results for randomly selected films with two readings. One reading
was that of the patient’s clinical site and was used for therapeutic decisions. The angiographic
film was then sent to another clinical site designated as a quality control site. The quality control
site read the films blindly, that is, without knowledge of the clinical site’s reading. From these
readings, the amount of disease was classified as “none” (entirely normal), “zero-vessel disease
but some disease,” and one-, two-, and three-vessel disease.

We wish to study the amount of agreement. One possible measure of this is the proportion
of the pairs of readings that are the same. This quantity is estimated by adding up the numbers

Table 7.8 Agreement with Respect to Number of Diseased Vessels

Clinical Site Reading

Quality Control

Site Reading Normal Some One Two  Three  Total
Normal 13 8 1 0 0 22
Some 6 43 19 4 5 77
One 1 9 155 54 24 243
Two 0 2 18 162 68 250
Three 0 0 11 27 240 278

Total 20 62 204 247 337 870
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on the diagonal of the table; those are the numbers where both the clinical and quality control
sites read the same quantity. In such a situation, the contingency table will be square. Let r be
the number of categories (in the table of this example, » = 5). The proportion of cases with
agreement is given by

;
niy+nyn 4+ 0y Nii

i=I

Py =

For this table, the proportion with agreement is given by P4 = (13+4341554+162+240)/870 =
613/870 = 0.7046.

The proportion of agreement is limited because it is determined heavily by the proportions
of people in the various categories. Consider, for example, a situation where each of two judges
places 90% of the measurements in one category and 10% in the second category, such as in
the following array:

Here there is no association whatsoever between the two measurements. In fact, the chi-square
value is precisely zero by design; there is no more agreement between the patients than that
expected by chance. Nevertheless, because both judges have a large proportion of the cases
in the first category, in 82% of the cases there is agreement; that is, P4 = 0.82. We have a
paradox: On the one hand, the agreement seems good (there is an agreement 82% of the time);
on the other hand, the agreement is no more than can be expected by chance. To have a more
useful measure of the amount of agreement, the kappa statistic was developed to adjust for the
amount of agreement that one expects purely by chance.

If one knows the totals of the different rows and columns, the proportion of observations
expected to agree by chance is given by the following equation:

,
ny.n.g+---+ngn., _ Z ni.n.;
n2

n?

Pc =

i=1
For the angiography example, the proportion of agreement expected by chance is given by

22 x20477 x 62 + 243 x 204 4 250 x 247 + 278 x 337

2702 =0.2777

Pc

The kappa statistic uses the fact that the best possible agreement is 1 and that, by chance, one
expects an agreement Pc. A reasonable measure of the amount of agreement is the proportion
of difference between 1 and Pc that can be accounted for by actual observed agreement. That
is, kappa is the ratio of the agreement actually observed minus the agreement expected by
chance, divided by 1 (which corresponds to perfect agreement), minus the agreement expected
by chance:

_ Pa-Fc
- 1-Pc
For our example, the computed value of kappa is

_0.7046 — 0.2777

=0.59
1-0.2777

The kappa statistic runs from —Pc/(1 — Pc) to 1. If the agreement is totally by chance, the
expected value is zero. Kappa is equal to 1 if and only if there is complete agreement between
the two categorizations [Cohen, 1968; Fleiss, 1981].
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Since the kappa statistic is generally used where it is clear that there will be statistically
significant agreement, the real issue is the amount of agreement. « is a measure of the amount
of agreement. In our example, one can state that 59% of the difference between perfect agreement
and the agreement expected by chance is accounted for by the agreement between the clinical
and quality control reading sites.

Now that we have a parameter to measure the amount of agreement, we need to consider the
effect of the sample size. For small samples, the estimation of x will be quite variable; for larger
samples it should be quite good. For relatively large samples, when there is no association, the
variance of the estimate is estimated as follows:

r
Pc + Pg — Z(niz.n.i + ni.n,zi)/n?.
i=1
n..(1 — Pc)?

varg(k) =

The subscript on varg(x) indicates that it is the variance under the null hypothesis. The standard
error of the estimate is the square root of this quantity. « divided by the standard error is
approximately a standard normal variable when there is no association between the quantities.
This may be used as a statistical test for association in lieu of the chi-square test [Fleiss et al.,
1969].

A more useful function of the general standard error is construction of a confidence interval
for the true k. A 100(1 —a)% confidence interval for the population value of « for large samples
is given by

(€ — Z1—as2v/var(k), K + zi—a/2v/ var(x))

The estimated standard error, allowing for association, is the square root of

var(k) =
njj ni.+n.; 2 nij ni+n;. ) i
; n.. [1—(T> a _x)] +§Z o~ [(T) a —x)] k= Pe(l — 1]

n..(1 — Pc)?
For our particular example, the estimated variance of « is
var(k) = 0.000449
The standard error of « is approximately 0.0212. The 95% confidence interval is

(0.57 — 1.96 x 0.0212,0.57 + 1.96 x 0.0212) = (0.55, 0.63)

A very comprehensive discussion of the use of x in medical research can be found in Kraemer
et al. [2002], and a discussion in the context of other ways to measure agreement is given by
Nelson and Pepe [2000].

The kappa statistic has drawbacks. First, as indicated, the small sample variance is quite
complicated. Second, while the statistic is supposed to adjust for marginal agreement is does
not really do so (see, e.g., Agresti [2002, p. 453]). Third, « ignores the ordering of the categories
(see Maclure and Willett [1987]). Finally, it is difficult to embed « in a statistical model: as, for
example, a function of the odds ratio or correlation coefficient. Be sure to consider alternatives
to kappa when measuring agreement; for example, the odds ratio and logistic regression as in
Chapter 6 or the log-linear models discussed in the next section.
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*7.5 LOG-LINEAR MODELS

For the first time we will examine statistical methods that deal with more than two variables
at one time. Such methods are important for the following reasons: In one dimension, we have
been able to summarize data with the normal distribution and its two parameters, the mean
and the variance, or equivalently, the mean and the standard deviation. Even when the data did
not appear normally distributed, we could get a feeling for our data by histograms and other
graphical methods in one dimension. When we observe two numbers at the same time, or are
working with two-dimensional data, we can plot the points and examine the data visually. (This
is discussed further in Chapter 9. Even in the case of two variables, we shall see that it is
useful to have models summarizing the data.) When we move to three variables, however, it is
much harder to get a “feeling” for the data. Possibly, in three dimensions, we could construct
visual methods of examining the data, although this would be difficult. With more than three
variables, such physical plots cannot be obtained; although mathematicians may think of space
and time as being a four-dimensional space, we, living in a three-dimensional world, cannot
readily grasp what the points mean. In this case it becomes very important to simplify our
understanding of the data by fitting a model to the data. If the model fits, it may summarize the
complex situation very succinctly. In addition, the model may point out relationships that may
reasonably be understood in a simple way. The fitting of probability models or distributions to
many variables at one time is an important topic.

The models are necessarily mathematically complex; thus, the reader needs discipline and
perseverance to work through and understand the methods. It is a very worthwhile task. Such
methods are especially useful in the analysis of observational biomedical data. We now proceed
to our first model for multiple variables, the log-linear model.

Before beginning the details of the actual model, we define some terms that we will be using.
The models we investigate are for multivariate categorical data. We already know the meaning
of categorical data: values of a variable or variables that put subjects into one of a finite number
of categories. The term multivariate comes from the prefix multi -, meaning “many,” and variate,
referring to variables; the term refers to multiple variables at one time.

Definition 7.1. Multivariate data are data for which each observation consists of values
for more than one random variable on each experimental unit. Multivariate statistical analysis
consists of data analysis of multivariate data.

The majority of data collected are, in fact, multivariate data. If one measures systolic and
diastolic blood pressure on each subject, there are two variables—thus, multivariate data. If we
administer a questionnaire on the specifics of brushing teeth, flossing, and so on, the response of
a person to each question is a separate variable, and thus one has multivariate data. Strictly speak-
ing, some of the two-way contingency table data we have looked at are multivariate data since
they cross-classify by two variables. On the other hand, tables that arose from looking at one
quantity in different subgroups are not multivariate when the group was not observed on experi-
mental units picked from a population but was part of a data collection or experimental procedure.

Additional terminology is included in the term log-linear models. We already have an idea
of the meaning of a model. Let us consider the two terms log and linear. The logarithm was
discussed in connection with the likelihood ratio chi-square statistics. (In this section, and indeed
throughout this book, the logarithm will be to the base e.) Recall, briefly some of the properties
of the logarithm. Of most importance to us is that the log of the product of terms is the sum of
the individual logs. For example, if we have three numbers, a, b, and ¢ (all positive), then

In(abc) =Ina +1Inb +Inc

Here, “In” represents the natural logarithm, the log to the base e. Recall that by the definition
of natural log, if one exponentiates the logarithm—that is, takes the number e to the power
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represented by the logarithm—one gets the original number back:

Inexpensive hand calculators compute both the logarithm and the exponential of a number.
If you are rusty with such manipulations, Problem 7.24 will give you practice in the use of
logarithms and exponentials.

The second term we have used is the term linear. It is associated with a straight line or a
linear relationship. For two variables x and y, y is a linear function of x if y = a + bx, where
a and b are constants. For three variables, x, y, and z, z is a linear function of x and y if
z =a + bx + cy, where a, b, and ¢ are constant. In general, in a linear relationship, one adds
a constant multiple for each of the variables involved. The linear models we use will look like
the following: Let

1J
8ij

be the logarithm of the probability that an observation falls into the ijth cell in the two-
dimensional contingency table. Let there be I rows and J columns. One possible model would be

1J __ 1 J
gij =u-+u; —|—uj

(For more detail on why the term linear is used for such models, see Note 7.4.)

We first consider the case of two-way tables. Suppose that we want to fit a model for
independence. We know that independence in terms of the cell probabilities 7;; is equivalent to
the following equation:

Tijj = 1.7

If we take logarithms of this equation and use the notation g;; for the natural log of the cell
probability, the following results:

gij=Inmjj=Inm. +Inm.;
When we denote the natural logs of ;. and 7.; by the quantities hlI and h]J , we have
8ij = hl-l + h;

The quantities hll and hJJ are not all independent. They come from the marginal probabilities
for the I row variables and the J column variables. For example, the hlI ’s satisfy the equation

1 1 1
eh1+ehz+...+eh1:1

This equation is rather awkward and unwieldy to work with; in particular, given I — 1 of the
h;’s, determination of the other coefficient takes a bit of work. It is possible to choose a different
normalization of the parameters if we add a constant. Rewrite the equation above as follows:

a1 e " nl L,
= (%) (25 ) (-2 )+ (-4

i'=1 Jj'=1 i'=1 J'=1
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The two quantities in parentheses farthest to the right both add to zero when we sum over the
indices i and j, respectively. In fact, that is why those terms were added and subtracted. Thus,
we can rewrite the equation for g;; as follows:

g,-j:u—{—uil—{—uj!, i=1,....1, j=1,...,J

where

u-1=0, ul =0
Sul=0. Y

i=1 j=1

It is easier to work with this normalization. Note that this is a linear model for the log of the
cell probability 7;;; that is, this is a log-linear model.

Recall that estimates for the ;. and 7.; were n;./n.. and n.; /n.., respectively. If one follows
through all of the mathematics involved, estimates for the parameters in the log-linear model
result. At this point, we shall slightly abuse our notation by using the same notation for both
the population parameter values and the estimated parameter values from the sample at hand.
The estimates are

S
Il

I n 1
gt
Z

<
~~
Il
—_
=]
oE
I
~ | —
-
—_
=
s |3

From these estimates we get fitted values for the number of observations in each cell. This
is done as follows: By inserting the estimated parameters from the log-linear model and then
taking the exponential, we have an estimate of the probability that an observation falls into the
ijth cell. Multiplying this by n.., we have an estimate of the number of observations we should
see in the cell if the model is correct. In this particular case, the fitted value for the ijth cell
turns out to be the expected value from the chi-square test presented earlier in this chapter, that
iS, n,nj/n

Let us illustrate these complex formulas by finding the estimates for one of the examples
above.

Example 7.1. (continued) We know that for the 2 x 4 table, we have the following values:

ng=18, nop,=31, n3=16, ng4=72, n;.=69, np. =68, n.=137
In(ny./n..) = —0.6859, In(ny./n..) = —0.7005
In(n.1/n..) = —=2.0296, In(n.p/n..) = —1.4860
In(n.3/n..) = —2.1474, In(n.4/n..) = —0.6433
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With these numbers, we may compute the parameters for the log-linear model. They are

. —0.6859 — 0.7005 n —2.0296 — 1.4860 — 2.1474 — 0.6433
u =
2 4

= —0.6932 — 1.5766 = —2.2698

ulj = —2.0296 — (—1.5766) = —0.4530
u{ = —0.6859 — (—0.6932) = 0.0073 u{ = —1.4860 — (—1.5766) = 0.0906
ué = —0.7004 — (-0.6932) = —0.0073 u{ = —2.1474 — (—1.5766) = —0.5708

ué{ = —0.6433 — (—1.5766) = 0.9333

The larger the value of the coefficient, the larger will be the cell probability. For example,
looking at the two values indexed by i, the second state having a minus sign will lead to a
slightly smaller contribution to the cell probability than the term with the plus sign. (This is
also clear from the marginal probabilities, which are 68/137 and 69/137.) The small magnitude
of the term means that the difference between the two [ state values has very little effect on
the cell probability. We see that of all the contributions for the j variable values, j = 4 has
the biggest effect, 1 and 3 have fairly large effects (tending to make the cell probability small),
while 2 is intermediate.

The chi-square goodness of fit and the likelihood ratio chi-square statistics that may be
applied to this setting are

(observed — fitted)?
X2 =
Z fitted

b d
LRX? =2 Z <observed In %)

Finally, if the model for independence does not hold, we may add more parameters. We can
find a log-linear model that will fit any possible pattern of cell probabilities. The equation for
the log of the cell probabilities is given by the following:

gij =u+u +ul +ull, i=1,...,1, j=1,...,]

where

It seems rather paradoxical, or at least needlessly confusing, to take a value indexed by i
and j and to set it equal to the sum of four values, including some indexed by i and j; the
right-hand side is much more complex than the left-hand side. The reason for doing this is that,
usually, the full (or saturated) model, which can give any possible pattern of cell probabilities,
is not desirable. It is hoped during the modeling effort that the data will allow a simpler model,
which would allow a simpler interpretation of the data. In the case at hand, we examine the
possibility of the simpler interpretation that the two variables are independent. If they are not,
the particular model is not too useful.

Note two properties of the fitted values. First, in order to fit the independence model, where
each term depends on at most one factor or one variable, we only needed to know the marginal
values of the frequencies, the n;. and n.;. We did not need to know the complete distribution of
the frequencies to find our fitted values. Second, when we had fit values to the frequency table,
the fitted values summed to the marginal value used in the estimation; that is, if we sum across
i or j, the sum of the expected values is equal to the sum actually observed.
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At this point it seems that we have needlessly confused a relatively easy matter: the analysis
of two-way contingency tables. If only two-way contingency tables were involved, this would
be a telling criticism; however, the strength of log-linear models appears when we have more
than two cross-classified categorical variables. We shall now discuss the situation for three cross-
classified categorical variables. The analyses may be extended to any number of variables, but
such extensions are not done in this book.

Suppose that the three variables are labeled X, Y, and Z, where the index i is used for the X
variable, j for the Y variable, and k for the Z variable. (This is to say that X will take values
1,...,1,Y willtake on 1, ... , J, and so on.) The methods of this section are illustrated by the
following example.

Example 7.5. The study of Weiner et al. [1979] is used in this example. The study involves
exercise treadmill tests for men and women. Among men with chest pain thought probably to
be angina, a three-way classification of the data is as follows: One variable looks at the resting
electrocardiogram and tells whether or not certain parts of the electrocardiogram (the ST- and
T-waves) are normal or abnormal. Thus, J = 2. A second variable considers whether or not
the exercise test was positive or negative (I = 2). A positive exercise test shows evidence of
an ischemic response (i.e., lack of appropriate oxygen to the heart muscles for the effort being
exerted). A positive test is thought to be an indicator of coronary artery disease. The third variable
was an evaluation of the coronary artery disease as determined by coronary arteriography. The
disease is classified as normal or minimal disease, called zero-vessel disease, one-vessel disease,
and multiple-vessel disease (K = 3). The data are presented in Table 7.9.

The most general log-linear model for the three factors is given by the following extension
of the two-factor work:

L0 K1) IK JK 1K
Gijk = Ut +uy e Fupi tupe tue g

where

i=1 j=1 k=1
1 J K J K
1J 1J 1K 1K JK JK
Do = oui =y il =) i =) i =Y ujif =0
i=1 j=1 i=1 k=1 j=1 k=1
1 J K
1JK 1JK 1JK
Wijp = Ujjp = Uijjp = 0
i= j=1 k=1
Table 7.9 Exercise Test Data
Number of Vessels Diseased (K)
Exercise Test Resting Electrocardiogram 0 1 2o0r3
Response (/) ST- and T-Waves (J) (k=1) (k=2) (k=3)
+ Normal (j = 1) 30 64 147
i=1 Abnormal (j = 2) 17 22 80
- Normal (j = 1) 118 46 38
(i=2) Abnormal (j = 2) 14 7 11

Source: Weiner et al. [1979].
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In other words, there is a u term for every possible combination of the variables, including
no variables at all. For each term involving one or more variables, if we sum over any one
variable, the sum is equal to zero. The term involving I, J, and K is called a three-factor term,
or a second-order interaction term; in general, if a coefficient involves M variables, it is called
an M-factor term or an (M — 1)th-order interaction term.

With this notation we may now formulate a variety of simpler models for our three-way
contingency table. For example, the model might be any one of the following simpler models:

. I J K
Hy:gije=u~+u; +uj +ug

. I J K 1J
H> : gijk =u+u; tuj tup +uy;

. I J K 1J IK JK
H;: gijk =u+u; tuj tup Fugp g Fuy

The notation has become so formidable that it is useful to introduce a shorthand notation for
the hypotheses. One or more capitalized indices contained in brackets will indicate a hypothesis
where the terms involving that particular set of indices as well as any terms involving subsets
of the indices are to be included in the model. Any terms not specified in this form are assumed
not to be in the model. For example,

[IJ]—>u+u{+u]!+u{jJ

[K] — u+ u,f
[IJK] — u—{—u{ —i—uJJ- —l—u,lf +u{jj +u{kK —l—ujj-,f +u{ﬁ<K
The formulation of the three hypotheses given above in this notation would be simplified as
follows:

Hy : [U]J]K]
Hy : [1J]K]
Hs : [IJIK]JK]

This notation describes a hierarchical hypothesis; that is, if we have two factor terms con-
taining, say, variables I and J, we also have the one-factor terms for the same variables. The
hypothesis would not be written [/ J][/][J], for example, because the last two parts would be
redundant, as already implied by the first. Using this bracket notation for the three-factor model,
there are eight possible hypotheses of interest. All except the most complex one have a simple
interpretation in terms of the probability relationships among the factors X, Y, and Z. This is
given in Table 7.10.

Hypotheses 5, 6, and 7 are of particular interest. Take, for example, hypothesis 5. This
hypothesis states that if you take into account the X variable, there is no association between
Y and Z. In particular, if one only looks at the two-way table of ¥ and Z, an association may
be seen, because in fact they are associated. However, if hypothesis 5 holds, one could then
conclude that the association is due to interaction with the variable X and could be “explained
away” by taking into account the values of X.

There is a relationship between hypotheses involving the bracket notation and the correspond-
ing tables that one gets from the higher-dimensional contingency table. For example, consider
the term [/ J]. This is related to the contingency table one gets by summing over K (i.e., over
the Z variable). In general, a contingency table that results from summing over the cells for one
or more variables in a higher-dimensional contingency table is called a marginal table. Very
simple examples of marginal tables are the marginal total column and the marginal total row
along the bottom of the two-way table.
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Table 7.10 Three-Factor Hypotheses and their Interpretation

Hypothesis Restated

Hypothesis Meaning in Words in Terms of the ;i s
1. [1[J][K] X, Y, and Z are independent Tijk = T0j--T0-j-TT-k
2. [J][K] Z is independent of X and Y Tijk = T0ij- Tk

3. [ IK][J] Y is independent of X and Z Tijk = Ti-kTT-j-

4. [I[ JK] X is independent of Y and Z Tijk = T--T- jk

5. J][ IK] For X known, Y and Z are independent; Tijk = T0ij. 7 k[ Ti--

that is, Y and Z are conditionally
independent given X

6. [ J][ JK] X and Z are conditionally independent Tijk = Tij. 70 jk /7.
given Y

7. [ IK][ JK] X and Y are conditionally independent Tijk = T kT jk/Tk
given Z

8. [ JI[ IK][ JK] No three-factor interaction No simple form

Using the idea of marginal tables, we can discuss some properties of fits of the various
hierarchical hypotheses for log-linear models. Three facts are important:

1. The fit is estimated using only the marginal tables associated with the bracket terms that
state the hypothesis. For example, consider hypothesis 1, the independence of the X,
Y, and Z variables. To compute the estimated fit, one only needs the one-dimensional
frequency counts for the X, Y, and Z variables individually and does not need to know
the joint relationship between them.

2. Suppose that one looks at the fitted estimates for the frequencies and sums the fitted
values to give marginal tables. The marginal sum for the fit is equal to the marginal table
for the actual data set when the marginal table is involved in the fitting.

3. The chi-square and likelihood ratio chi-square tests discussed above using the observed
and fitted values still hold.

We consider fitting hypothesis 5 to the data of Example 7.5. The hypothesis stated that if one
knows the response to the maximal treadmill test, the resting electrocardiogram ST- and T-wave
abnormalities are independent of the number of vessels diseased. The observed frequencies and
the fitted frequencies, as well as the values of the u-parameters for this model, are given in
Table 7.11.

The relationship between the fitted parameter values and the expected, or fitted, number of
observations in a cell is given by the following equations:

1 J K 1J 1K
ﬁijk — eu+ui +uj +uy +”ij +ujy

The fitted value = n...T; jk» Where n... is the total number of observations.
For these data, we compute the right-hand side of the first equation for the (1,1,1) cell. In this
case,

Fi11 = exp(—2.885 + 0.321 + 0.637 — 0.046 — 0.284 — 0.680)
= ¢ 297 = 0.053

fitted value = 594 x 0.053 = 31.48



LOG-LINEAR MODELS 227

Table 7.11 Fitted Model for the Hypothesis That the Resting Electrocardiogram ST- and T-Wave
(Normal or Abnormal) Is Independent of the Number of Vessels Diseased (0, 1, and 2-3)
Conditionally upon Knowing the Exercise Response (4 or —)

Cell (i, j, k) Observed Fitted u-Parameters

1,1,1) 30 31.46 u=—2.885

(1,1,2) 64 57.57 ul = —ul =0321

(1,1,3) 147 151.97 uj = —uy = 0.637

(1,2,1) 17 15.54 uf = —0.046, uX = —0.200
(1,2,2) 22 28.43 uy =0.246

(1,2.3) 80 75.04 ui’) = —0.284,ui’, = 0.284
@,1,D) 118 113.95 ul’y =0.284,ul’, = —0.284
(2.1,2) 46 45.75 utk = —0.680, uiX = 0.078
2,1,3) 38 42.30 uik =0.602

(2.2, 14 18.05 us® =0.680, ul¥ = —0.078
22.2) 7 7.25 bk = —0.602

(2,2,3) 11 6.70

where exp(argument) is equal to the number e raised to a power equal to the argument. The com-
puted value of 31.48 differs slightly from the tabulated value, because the tabulated value came
from computer output that carried more accuracy than the accuracy used in this computation.

We may test whether the hypothesis is a reasonable fit by computing the chi-square value
under this hypothesis. The likelihood ratio chi-square value is computed as follows:

LRX? = 2(301n

1
110D —) = 6.86
3146 T T itng=g)

To assess the statistical significance we need the degrees of freedom to examine the chi-square
value. For the log-linear model the degrees of freedom is given by the following rule:

Rule 1. The chi-square statistic for model fit of a log-linear model has degrees of freedom
equal to the total number of cells in the table (I x J x K) minus the number of independent
parameters fitted. By independent parameters we mean the following: The number of parameters
fitted for the X variable is I — 1 since the uiI terms sum to zero. For each of the possible terms
in the model, the number of independent parameters is given in Table 7.12.

For the particular model at hand, the number of independent parameters fitted is the sum of
the last column in Table 7.13. There are 12 cells in the table, so that the number of degrees of
freedom is 12 — 8, or 4. The p-value for a chi-square of 6.86 for four degrees of freedom is
0.14, so that we cannot reject the hypothesis that this particular model fits the data.

We are now faced with a new consideration. Just because this model fits the data, there may
be other models that fit the data as well, including some simpler model. In general, one would
like as simple a model as possible (Occam’s razor); however, models with more parameters
generally give a better fit. In particular, a simpler model may have a p-value much closer to the
significance level that one is using. For example, if one model has a p of 0.06 and is simple, and
a slightly more complicated model has a p of 0.78, which is to be preferred? If the sample size
is small, the p of 0.06 may correspond to estimated cell values that differ considerably from the
actual values. For a very large sample, the fit may be excellent. There is no hard-and-fast rule
in the trade-off between the simplicity of the model and the goodness of the fit. To understand
the data, we are happy with the simple model that fits fairly well, although presumably, it is
not precisely the probability model that would fit the entirety of the population values. Here we
would hope for considerable scientific understanding from the simple model.
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Table 7.12 Degrees of Freedom
for Log-Linear Model Chi-Square

Term Number of Parameters
u 1

uil I -1

uj J—1

u,{( K -1

uiljj I -1DJ =1

ulk I-1D(K -1

ujjkk J—=1D(K =1

ul ik (=D =K -1

Table 7.13 Parameters for Example 7.5

Number of Parameters

Model Terms General Example 7.5
u 1 1
ul I-1 1
ul J-1 1
uy K—1 2
ul -1 =1 1
u{j{K (I-1(K -1 2

Table 7.14 Chi-Square Goodness-of-Fit Statistics
for Example 7.5 Data

Model df. LRX?  p-Value X2

UIVIK]
(I 1K1

7 18421 < 0.0001 19235

6 15435 < 0.0001  149.08
[IK 1[J] 5 36.71 < 0.0001 34.09
[TI/K] 5 168.05 < 0.0001  160.35
[J][IK] 4 6.86 0.14 7.13
(U ][JK] 4 138.19 < 0.0001  132.30
[IK J[/K] 3 20.56 0.0001 21.84
[ IK][JK] 2 2.96 0.23 3.03

For this example, Table 7.14 shows for each of the eight possible models the degrees of
freedom (d.f.), the LRX? value (with its corresponding p-value for reference), and the “usual”
goodness-of-fit chi-square value. We see that there are only two possible models if we are to
simplify at all rather than using the entire data set as representative. They are the model fit
above and the model that contains each of the three two-factor interactions. The model fit above
is simpler, while the other model below has a larger p-value, possibly indicating a better fit.
One way of approaching this is through what are called nested hypotheses.

Definition 7.2. One hypothesis is nested within another if it is the special case of the
other hypothesis. That is, whenever the nested hypothesis holds it necessarily implies that the
hypothesis it is nested in also holds.
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If nested hypotheses are considered, one takes the difference between the likelihood ratio chi-
square statistic for the more restrictive hypothesis, minus the likelihood ratio chi-square statistic
for the more general hypothesis. This difference will itself be a chi-square statistic if the special
case holds. The degrees of freedom of the difference is equal to the difference of freedom for
the two hypotheses. In this case, the chi-square statistic for the difference is 6.86 —2.96 = 3.90.
The degrees of freedom are 4 — 2 = 2. This corresponds to a p-value of more than 0.10. At
the 5% significance level, there is marginal evidence that the more general hypothesis does
fit the data better than the restrictive hypothesis. In this case, however, because of the greater
simplicity of the restrictive hypothesis, one might choose it to fit the data. Once again, there is
no hard and fast answer to the payoff between fit of the data and simplicity of interpretation of
a hypothesis.

This material is an introduction to log-linear models. There are many extensions, some of
which are mentioned briefly in the Notes at the end of the chapter. An excellent introduction
to log-linear models is given in Fienberg [1977]. Other elementary books on log-linear models
are those by Everitt [1992] and Reynolds [1977]. A more advanced and thorough treatment is
given by Haberman [1978, 1979]. A text touching on this subject and many others is Bishop
et al. [1975].

NOTES

7.1 Testing Independence in Model 1 and Model 2 Tables

This note refers to Section 7.2.

1. Model 1. The usual null hypothesis is that the results are statistically independent. That
is (assuming row variable = i and column variable = j):

P[i and j] = P[i]1P[/]

The probability on the left-hand side of the equation is m;;. From Section 7.2, the marginal
probabilities are found to be

c r
. = E mij and  mw.; = Zﬂij
j=1 i=1

The null hypothesis of statistical independence of the variables is
H() CTij =TT
Consider how one might estimate these probabilities under two circumstances:

a. Without assuming the variables are independent.
b. Assuming the variables are independent.

In the first instance we are in a binomial situation. Let a success be the occurrence of the
ijth pair. Let

r c
=Y
i=1 j=1
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The binomial estimate for 7;; is the number of successes divided by the number of trials:

njj
pij = —
J n..

If we assume independence, the natural approach is to estimate ;. and 7. ;. But the occurrence
of state i for the row variable is also a binomial event. The estimate of 7;. is the number of
occurrences of state i for the row variable (n;.) divided by the sample size (n..). Thus,

n;.
pi- = —
n..
Similarly, 7.; is estimated by
"
Pi=

Under the hypothesis of statistical independence, the estimate of 7;.7r.; = m;; is

ni.n.j

n

The chi-square test will involve comparing estimates of the expected number of observations
with and without assuming independence. With independence, we expect to observe n..rw;;
entries in the ijth cell. This is estimated by

nj.n.;

2. Model 2. Suppose that the row variable identifies the population. The null hypothesis is
that all » populations have the same probabilities of taking on each value of the column variable.
That is, for any two rows, denoted by i and i’, say, and all j,

H() LT = ]T,‘/j
As in the first part above, we want to estimate these probabilities in two cases:

a. Without assuming anything about the probabilities.

b. Under Hj, that is, assuming that each population has the same distribution of the
column variable.

Under (a), if no assumptions are made, 7;; is the probability of obtaining state j for the
column variable in the n;. trials from the ith population. Again the binomial estimate holds:

njj
pij = —
J i

i

If the null hypothesis holds, we may “pool” all our n.. trials to get a more accurate estimate of
the probabilities. Then the proportion of times the column variable takes on state j is

n.;
J

pi=—

J n
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As in the first part, let us calculate the numbers we expect in the cells under (a) and (b). If
(a) holds, the expected number of successes in the ;. trials of the ith population is n;.7;;. We
estimate this by

njj
ni(—) =njj
n;.

Under the null hypothesis, the expected number n;.7;; is estimated by

ni.n.;

ni.-pj = "

In summary, under either model 1 or model 2, the null hypothesis is reasonably tested by
comparing n;; with n;.n.;/n...

7.2 Measures of Association in Contingency Tables

Suppose that we reject the null hypothesis of no association between the row and column
categories in a contingency table. It is useful then to have a measure of the degree of association.
In a series of papers, Goodman and Kruskal [1979] argue that no single measure of association
for contingency tables is best for all purposes. Measures must be chosen to help with the problem
at hand. Among the measures they discuss are the following:

1. Measure \c. Call the row variable or row categorization R and the column variable or
column categorization C. Suppose that we wish to use the value of R to predict the value of C.
The measure Ac is an estimate of the proportion of the errors made in classification if we do
not know R that can be eliminated by knowing R before making a prediction. From the data,
Ac is given by

(oF— max; nij) — max; n.;

n.. —man n.j

Ac =

AR is defined analogously.

2. Symmetric measure A. Ac does not treat the row and column classifications symmetrically.
A symmetric measure may be found by assuming that the chances are 1/2 and 1/2 of needing to
predict the row and column variables, respectively. The proportion of the errors in classification
that may be reduced by knowing the other (row or column variable) when predicting is estimated
by A:

(37— max; njj) + (ijl max; nij> — max; n;. — max; n.;

2n.. — (max; n;. +max; n.;)

3. Measure y for ordered categories. In many applications of contingency tables the cate-
gories have a natural order: for example, last grade in school, age categories, number of weeks
hospitalized. Suppose that the orderings of the variables correspond to the indices i and j for
the rows and columns. The y measure is the difference in the proportion of the time that the two
measures have the same ordering minus the proportion of the time that they have the opposite
ordering, when there are no ties. Suppose that the indices for the two observations are i, j and
i, j. The indices have the same ordering if

(IDi<iand j<j or ()i>iandj>j
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They have the opposite ordering if
(I)i<iand j>j or ()i>iandj<j

There are ties if i =i and/or j = j. The index is

_25—-1+4T
T 1-T
where
r C
Nij Y isi Zj>j nij
§=23> -
i=1 j=1 -
and

. . 2 . 2 . .
iz (Zj‘:1 ”U) + 205 (o ni)” = X X ",2,

n’

4. Karl Pearson’s contingency coefficient, C. Since the chi-square statistic (X?) is based
on the square of the difference between the values observed in the contingency table and the
values estimated, if association does not hold, it is reasonable to base a measure of association
on X2. However, chi-square increases as the sample size increases. One would like a measure
of association that estimated a property of the total population. For this reason, X2/n.. is used
in the next three measures. Karl Pearson proposed the measure C.

X2/n..
C=, |—F—
1+ X2%/n..

5. Cramer’s V. Harold Cramer proposed a statistic with values between 0 and 1. The coef-
ficient can actually attain both values.

V= X2/n..
"\ minimum(r — 1,¢ — 1)

6. Tshuprow’s T, and the ®* coefficient. The two final coefficients based on X2 are

_ X2/n.. B N
T = ,—(r—l)(c—l) and & =,/X*/n..

We compute these measures of association for two contingency tables. The first table comes
from the Robertson [1975] seat belt paper discussed in the text. The data are taken for 1974 cars
with the interlock system. They relate age to seat belt use. The data and the column percents
are given in Table 7.15. Although the chi-square value is 14.06 with p = 0.007, we can see
from the column percentages that the relationship is weak. The coefficients of association are

rc =0, A=0.003, C=0.08, T=0.04
Ar =0.006, y =-0.03, V=0.06, & =0.08
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Table 7.15 Seat Belt Data by Age

Age (Years) Column Percents (Age)
Belt Use <30 30-49 > 50 < 30 30-49 > 50
Lap and shoulder 206 580 213 45 50 45
Lap only 36 125 65 8 11 14
None 213 459 192 47 39 41
100 100 100

In general, all these coefficients lie between —1 or 0, and +1. They are zero if the variables are
not associated at all. These values are small, indicating little association.

Consider the following data from Weiner et al. [1979], relating clinical diagnosis of chest
pain to the results of angiographic examination of the coronary arteries:

Frequency Row Percents
(Vessels Diseased) (Vessels Diseased)
Chest Pain 0 1 2o0r3 0 1 2or3 Total

Definite angina 66 135 419 11 22 68 101
Probable angina 179 139 276 30 23 46 99
Nonischemic 197 39 15 78 16 6 100

The chi-square statistic is 418.48 with a p-value of effectively zero. Note that those with
definite angina were very likely (89%) to have disease, and even the probability of having
multivessel disease was 68%. Chest pain thought to be nonischemic was associated with “no
disease” 78% of the time. Thus, there is a strong relationship. The measures of association
are

Ac=024, A= 020, C=047, T =038
Ar=0.16, y=-064, V=038 @ =053

More information on these measures of association and other potentially useful measures is
available in Reynolds [1977] and in Goodman and Kruskal [1979].

7.3 Testing for Symmetry in a Contingency Table

In a square table, one sometimes wants to test the table for symmetry. For example, when
examining two alternative means of classification, one may be interested not only in the amount
of agreement («), but also in seeing that the pattern of misclassification is the same. In this
case, estimate the expected value in the ijth cell by (n;; +nj;)/2. The usual chi-square value is
appropriate with r(r — 1)/2 degrees of freedom, where r is the number of rows (and columns).
See van Belle and Cornell [1971].

7.4 Use of the Term Linear in Log-Linear Models

Linear equations are equations of the form y = c+a; X1 +a2X>+- - -+a, X, for some variables
X1,...,X, and constants ¢ and ay, ... ,a,. The log-linear model equations can be put into
this form. For concreteness, consider the model [IJ][K], where i = 1,2, j =1,2,and k =1, 2.
Define new variables as follows:
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1 ifi=1, 1 ifi=2, 1 itj=1,
Xl_[o ifi =2; Xz—[o ifi=1; X3—[0 if j=2;
1 ifj=2, 1 ifk=1, 1 ifk=2,
X“—{o if j=1 X5—{0 if k=2 Xﬁ—{o if k=1,
1 ifi=1,j=1, 1 iti=1,j=2,

X7= 0 otherwise; Xy = [ 0 otherwise;
1 ifi=2,=1, 1 ifi=2,j=2,

Xo = 0 otherwise Xio = { 0 otherwise

Then the model is
log mijr = u + M{Xl + uéXz + ule3 + ng4 + u{(X5 + M§X6
+M{,J1X7+M{,J2X8+M£J1X9+M£J2X10

Thus the log-linear model is a linear equation of the same form as y = ¢ + a1 X1 + a2 X2 +
-+ 4 a, X,. We discuss such equations in Chapter 11. Variables created to pick out a certain
state (e.g., i = 2) by taking the value 1 when the state occurs, and taking the value 0 otherwise,
are called indicator or dummy variables.

7.5 Variables of Constant Probability in Log-Linear Models

Consider the three-factor X, Y, and Z log-linear model. Suppose that Z terms are entirely
“omitted” from the model, for example, [//] or

logmijr =u + u,’ + u{ +ui1jj

The model then fits the situation where Z is uniform on its state; that is,

P[Z=k]=%, k=1,...,K

7.6 Log-Linear Models with Zero Cell Entries

Zero values in the contingency tables used for log-linear models are of two types. Some arise
as sampling zeros (values could have been observed, but were not in the sample). In this case,
if zeros occur in marginal tables used in the estimation:

e Only certain u-parameters may be estimated.
e The chi-square goodness-of-fit statistic has reduced degrees of freedom.

Some zeros are necessarily fixed; for example, some genetic combinations are fatal to oft-
spring and will not be observed in a population. Log-linear models can be used in the analysis
(see Bishop et al., [1975]; Haberman [1979]; Fienberg [1977]).

7.7 GSK Approach to Higher-Dimensional Contingency Tables

The second major method of analyzing multivariate contingency tables is due to Grizzle et al.
[1969]. They present an analysis method closely related to multiple regression (Chapter 11). Ref-
erences in which this method are considered are Reynolds [1977] and Kleinbaum et al. [1988].



PROBLEMS

PROBLEMS

235

In Problems 7.1-7.9, perform the following tasks as well as any other work requested. Prob-
lems 7.1-7.5 are taken from the seat belt paper of Robertson [1975].

(a)
(b)
(c)
)
(e)

®

(2

(h)

71

If a table of expected values is given with one or more missing values, compute
the missing values.

If the chi-square value is not given, compute the value of the chi-square statistic.
State the degrees of freedom.

State whether the chi-square p-value is less than or greater than 0.01, 0.05, and
0.10 .

When tables are given with missing values for the adjusted residual values, p-
values and (r — 1) x (¢ — 1) x p-values, fill in the missing values.

When percent tables are given with missing values, fill in the missing percent-
ages for the row percent table, column percent table, and total percent table, as
applicable.

Using the 0.05 significance level, interpret the findings. (Exponential notation is
used for some numbers, e.g., 34, 000 = 3.4x 10* = 3.4E4; 0.0021 = 2.1x1073 =
2.1E-3)

Describe verbally what the row and column percents mean. That is, “of those
with zero vessels diseased ...,” and so on.

In 1974 vehicles, seat belt use was considered in association with the ownership of the

vehicle. (“L/S” means “both lap and shoulder belt.”)

Ownership
Belt Use Individuals Rental Lease  Other Corporate
L/S 583 145 86 182
Lap Only 139 24 24 31
None 524 59 74 145
Expected Adjusted Residuals
615.6 112.6 909 176.9 —-2.99 ?7 =076 0.60
134.7 24.7 19.9 38.7 0.63 —-0.15 102 -—-144
495.7 90.7 ? ? 2.65 —4.55 ? 0.31
p—Values (r —1) x (¢ —1) x p— Values
0.0028 SE—-6 04481 0.5497 0.017 3E-5 1+ 1+
0.5291 0.8821 ? ? 1+ 1+ 1+ 0.8869
0.0080 S53E—-6 0.8992 0.7586 0.048 3E-5 1+ 1+
Column Percents
47 7 47 51 d.f.=?
11 11 13 9

X2 =126.72
42 7 7 4] —_—
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7.2 In 1974 cars, belt use and manufacturer were also examined. One hundred eighty-nine
cars from “other” manufacturers are not entered into the table.

Manufacturer

Belt Use GM Toyota AMC Chrysler Ford VW

L/S 498 25 36 74 285 33
Lap only 102 5 12 29 43 11
None 334 18 30 67 259 51

Adjusted Residuals

3.06 033 -0.65 -170 —-0.69 —3.00
049 —0.03 ? 2.89 -=3.06 033
—-343 -0.32 -0.23 -0.08 2.63 ?

p—Values

0.0022 0.7421 0.5180 0.0898 0.4898  0.0027
0.6208  0.9730 ? 0.0039 0.0022 0.7415
0.0006  0.7527 ? 0.9366 0.0085 0.0043

Column Percents

53 52 46 44 49 9 df. =2
11 10 15 17 7 2?2 X2 =34.30
3 38 38 39 ? 9?9 T

7.3 The relationship between belt use and racial appearance in the 1974 models is given
here. Thirty-four cases whose racial appearance was “other” are excluded from this
table.

Racial Appearance

Belt Use White Black
L/S 866 116
Lap only 206 20
None 757 102
Expected Adjusted Residuals p—Values
868.9 113.1 —0.40 0.40 0.69 0.69 d.f. =?
? 26.0 1.33 —-1.33 ? ? X2 =9
? 98.9 ? ? 0.67 0.67

7.4 The following data are given as the first example in Note 7.2. In the 1974 cars, belt
use and age were cross-tabulated.
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Expected

Adjusted Residuals

217.59 556.64
49.22 12593

? 206 —1.23
—-226 -0.13 ?

? 481.42 194.39 267 =200 —-0.25

p—Values (r —1) x (¢ — 1) x p—Values
0.219 ? 0.217 0.88 0.16 0.87
0.024 0.895 0.017 ? ? ?
0.007 ? 0.799 0.03 0.18 1+
Column %s Row %s

237

45 7 45 22 2 df=?
27 14 16 55 29 X%=14.06
47 39 41 25 53 22 @ ———————

7.5 In the 1974 cars, seat belt use and gender of the driver were related as follows:

Gender

Belt Use Female Male

L/S 267 739
Lap only 85 142
None 261 606
Expected Adjusted Residuals p—Values
? ? ? ? 0.0104 0.0104

66.3 160.7 2.90 —2.90 0.0038 0.0038
253.1 6139 0.77 -0.77 ? ?

(r —1) x (¢ — 1) x p—Values

0.02 0.02
0.01 0.01
? ?

Column %s Total %s
44 50 13 35 df. =?

14 ?7 4 7?7 Xr=9
43 ?7 7 ?

7.6 The data are given in the second example of Note 7.2. The association of chest pain
classification and amount of coronary artery disease was examined.
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Adjusted Residuals

(r = 1) x (¢ — 1) x p—Values

—13.95 0.33 12.54 1.0E — 30 1+ 4.3E — 27
? 1.57 —1.27 1+ 0.47 0.82
1832 —-247 —-1480 14E—-40 0.05 8.8E—33
Row %s Column %s
11 22 68 ? 43 59 df. =?
30 23 46 ? 44 39 X2 —=418.48
? ? ? ? 12 2

7.7 Peterson et al. [1979] studied the age at death of children who died from sudden infant
death syndrome (SIDS). The deaths from a variety of causes, including SIDS, were
cross-classified by the age at death, as in Table 7.16, taken from death records in King
County, Washington, over the years 1969-1977.

Table 7.16 Death Data for Problem 7.7¢

Age at Death

0 1-6 24 5-26 27-51
Cause Days Days Weeks Weeks Weeks
Hyaline membrane disease 19 51 7 0 0
Respiratory distress syndrome 68 191 46 0 3
Asphyxia of the newborn 105 60 7 4 2
Immaturity 104 34 3 0 0
Birth injury 115 105 17 2 0
Congenital malformation 79 101 72 75 32
Infection 7 38 36 43 18
SIDS 0 0 24 274 24
All other 60 51 28 58 35

ad.f. =2; X2 = 1504.18.

(a) The values of (r — 1) x (¢ — 1) x p-value for the adjusted residual are given here
multiplied by —1 if the adjusted residual is negative and multiplied by +1 if the
adjusted residual is positive.

-1+

—0.43
3.0E — 18
2.3E —-126
1.1E - 11
—-0.20
—1.1IE -8
—312E-25

—14

14E-9
4.6E — 26
1+

—1+

39E -4
—1+

—14
—34E — 28
—0.03

-1+ —38E-5

1+ —-33E-20

—0.02 —45E-10
—58E-3 —12E-9
—042 —-38E-15
7.7E -6 -1+
1.3E-5 0.90
—0.19 1.7E — 57

1+ 1+

—0.89
—32E-3
—0.18
—0.08
—1.6E—-3
0.12

6.5E -3
1+

29E -9




PROBLEMS 239

7.8

7.9

What is the distribution of SIDS cases under the null hypothesis that all causes
have the same distribution?
(b) What percent display (row, column, or total) would best emphasize the difference?

Morehead [1975] studied the relationship between the retention of intrauterine devices
(IUDs) and other factors. The study participants were from New Orleans, Louisiana.
Tables relating retention to the subjects’ age and to parity (the number of pregnancies)
are studied in this problem (one patient had a missing age).

(a) Was age related to IUD retention?

Age Continuers  Terminators
19-24 41 48
25-29 50 40
30+ 63 27
Expected Adjusted Residuals p—Values
5095 ? —2.61 2.61 0.0091  0.0091
51.52 385 —0.40 0.40 ? ?
51.52 385 ? ? 0.0027  0.0027
Column %s Row %s
266 41.7 46.1 539 d.f. =?
? 34.8 ? ? X2 =9
? 235 70.0 30.0

(b) The relationship of parity and IUD retention gave these data:

Parity Continuers  Terminators

1-2 59 53
3-4 39 34
5+ 57 28
Adjusted Residuals Total %s
—1.32 1.32 ? 19.6 d.f. =?
—0.81 0.81 144 2 X2 =474
? ? 21.1 ? -

McKeown et al. [1952] investigate evidence that the environment is involved in infantile
pyloric stenosis. The relationship between the age at onset of the symptoms in days,
and the rank of the birth (first child, second child, etc.) was given as follows:
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(a)
(b)

(c)

(d)

(e)

®
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Age at Onset of Symptoms (Days)

Birth Rank 0-6 7-13 14-20 21-27 28-34 3541 =>42
1 42 41 116 140 99 45 58
2 28 35 63 53 49 23 31
>3 26 21 39 48 39 14 23

Find the expected value (under independence) for cell (i = 2, j = 3). For this
cell compute (observed - expected)?/ expected.

The chi-square statistic is 13.91. What are the degrees of freedom? What can you
say about the p-value?

In the paper, the authors present, the column percents, not the frequencies, as
above. Fill in the missing values in both arrays below. The arrangement is the
same as the first table.

44 42 53 58 53 55 52
29 36 29 ? 26 28 28
? 7 18 20 21 17 21

The adjusted residual p-values are

0.076 0.036 0.780 0.042 0.863 0.636 0.041
0.667 0.041 0.551 0.035 0.710 0.874 0.734
0.084 0.734 ? 0.856 0.843 0.445 0.954

What can you conclude?

The authors note that the first two weeks appear to have different patterns. They
also present the data as:

Age at Onset (Days)

Birth Rank 0-13 > 14
1 83 458

2 63 219

>3 47 163

For this table, X> = 8.35. What are the degrees of freedom? What can you
say about the p-value?

Fill in the missing values in the adjusted residual table, p-value table, and column
percent table. Interpret the data.

Adjusted Residuals p—Values Column %s

—2.89 2.89 0.0039 0.0039 43 55
? ? 0.065 0.065 33 ?
1.54 —1.54 ? ? 24 ?

Why is it crucial to know whether prior to seeing these data the investigators had
hypothesized a difference in the parity distribution between the first two weeks
and the remainder of the time period?

Problems 7.10-7.16 deal with the chi-square test for trend. The data are from a paper
by Kennedy et al. [1981] relating operative mortality during coronary bypass operations
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to various risk factors. For each of the tables, let the scores for the chi-square test for

trend be consecutive integers. For each of the tables:

a. Compute the chi-square statistic for trend. Using Table A.3, give the strongest

possible statement about the p-value.

b. Compute, where not given, the percentage of operative mortality, and plot the

percentage for the different categories using equally spaced intervals.

c. The usual chi-square statistic (with k — 1 degrees of freedom) is given with
its p-value. When possible, from Table A.3 or the chi-square values, tell which
statistic is more highly significant (has the smallest p-value). Does your figure in

(b) suggest why?

dian Heart Classification from mild (class I) to severe (class IV).

Anginal Pain Classification

Usual
Surgical Mortality I I III v
2 _
Yes 6 19 47 59 X __7 371Elf 7
No 242 1371 2494 1314 p_i

% surgical mortality 2.4 1.4 1.8 ?

7.10 The amount of anginal (coronary artery disease) chest pain is categorized by the Cana-

7.11 Congestive heart failure occurs when the heart is not pumping sufficient blood. A heart

damaged by a myocardial infarction, heart attack, can incur congestive heart failure.
A score from O (good) to 4 (bad) for congestive heart failure is related to operative

mortality.
Congestive Heart Failure Score
Usual
Operative Mortality 0 1 2 3 4 e —
X2 = 46.45
No 4480 1394 404 164 36 —

% operative mortality 1.6 34 ? 6.8 100

7.12 A measure of left ventricular performance, or the pumping action of the heart, is the

ejection fraction, which is the percentage of the blood in the left ventricle that is pumped

during the beat. A high number indicates a more efficient performance.

Ejection Fraction (%)

Operative Mortality <19 2029 30-39 4049 >50 Usual
Yes 1 4 5 22 74 X?=834
No 14 88 292 685 3839 p =0.080

% operative mortality 6.7 ? ? 3.1 1.9
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7.13

7.14

7.15

7.16

CATEGORICAL DATA: CONTINGENCY TABLES

A score was derived from looking at how the wall of the left ventricle moved while
the heart was beating (details in CASS [1981]). A score of 5 was normal; the larger
the score, the worse the motion of the left ventricular wall looked. The relationship to
operative mortality is given here.

Wall Motion Score

Usual
Operative Mortality 5-7 8-11 12-15 16-19 > 20 _—
X2 =28.32
Yes 65 36 32 10 2 p=11E-5
No 3664 1605 746 185 20 -
% operative mortality 1.7 22 ? 5.1 9.1

What do you conclude about the relationship? That is, if you were writing a paragraph
to describe this finding in a medical journal, what would you say?

After the blood has been pumped from the heart, and the pressure is at its lowest point,
a low blood pressure in the left ventricle is desirable. This left ventricular end diastolic
pressure [LVEDP] is measured in millimeters of mercury (mmHg).

LVEDP
Usual
Operative Mortality 0-12 13-18 19-24 >24 _
X% =34.49
Yes 56 43 22 26 p= 1.6E —7
No 3452 1692 762 416 @—
% operative mortality ? 2.5 2.8 5.9
The number of diseased vessels and operative mortality are given by:
Diseased Vessels
Usual
Operative Mortality 1 2 3 _—
X2 =195
Yes 17 43 91 p= 0.019
No 1196 2018 3199

% operative mortality 1.4 2.1 ?

The left main coronary artery, if occluded (i.e., totally blocked), blocks two of the three
major arterial vessels to the heart. Such an event almost always leads to death. Thus,
people with much narrowing of the left main coronary artery usually receive surgical
therapy. Is this narrowing also associated with higher surgical mortality?

Percentage Narrowing

Usual
Operative Mortality 0-49 50-74 75-89 > 90
X2 =37.75
Yes 116 8 10 19 ,_378_3
No 5497 486 268 222 -

% operative mortality 2.1 1.6 ? 7.9
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717

7.18

7.19

In Robertson’s [1975] seat belt study, the observers (unknown to them) were checked
by sending cars through with a known seat belt status. The agreement numbers between
the observers and the known status were:

Belt Use in Vehicles Sent

Belt Use Reported S/L Lap Only No Belt

Shoulder and lap 28 2 0
Lap only 3 33 6
No belt 0 15 103

(a) Compute Py, Pc, and «.
(b) Construct a 95% confidence interval for «.

(¢) Find the two-sided p-value for testing k = O (for the entire population) by using
Z = k/SEp(k).

The following table is from [Fisher et al., 1982]. The coronary artery tree has consid-
erable biological variability. If the right coronary artery is normal-sized and supplies
its usual share of blood to the heart, the circulation of blood is called right dominant.
As the right coronary artery becomes less important, the blood supply is characterized
as balanced and then left dominant. The data for the clinical site and quality control
site joint readings of angiographic films are given here.

Dominance (Clinical Site)

Dominance (QC Site) Left Balanced Right

Left 64 7 4
Balanced 4 35 32
Right 8 21 607

(a) Compute Py, Pc, and « (Section 7.4).
(b) Find var(x) and construct a 90% confidence interval for the population value of «.

Example 7.4 discusses the quality control data for the CASS arteriography (films of
the arteries). A separate paper by Wexler et al. [1982] examines the study of the left
ventricle. Problem 7.12 describes the ejection fraction. Clinical site and quality control
site readings of ejection gave the following table:

Ejection Fraction (QC Site)

Ejection Fraction (Clinical Site) > 50% 30-49% < 30%

> 50% 302 27 5
30-49% 40 55 9
< 30% 1 9 18

(a) Compute Py, Pc, and «.
(b) Find SE(x) and construct a 99% confidence interval for the population value of «.
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7.20 The value of k depends on how we construct our categories. Suppose that in Example 7.4
we combine normal and other zero-vessel disease to create a zero-vessel disease category.
Suppose also that we combine two- and three-vessel disease into a multivessel-disease
category. Then the table becomes:

7.21

(a)
(b)

(c)

Vessels Diseased

(Clinical Site)
Vessels Diseased

(QC Site) 0 1 Multi-

0 70 20 9
1 10 155 78
Multi- 2 29 497

Compute Py, Pc, and «.

Is this kappa value greater than or less than the value in Example 7.4? Will this
always occur? Why?

Construct a 95% confidence interval for the population value of «.

Zeiner-Henriksen [1972a] compared personal interview and postal inquiry methods of
assessing infarction. His introduction follows:

The questionnaire developed at the London School of Hygiene and Tropical Medicine and
later recommended by the World Health Organization for use in field studies of cardiovas-
cular disease has been extensively used in various populations. While originally developed
for personal interviews, this questionnaire has also been employed for postal inquiries. The
postal inquiry method is of course much cheaper than personal interviewing and is without
interviewer error.

A Finnish-Norwegian lung cancer study offered an opportunity to evaluate the repeatability
at interview of the cardiac pain questionnaire, and to compare the interview symptom results
with those of a similar postal inquiry. The last project, confined to a postal inquiry of the
chest pain questions in a sub-sample of the 4092 men interviewed, was launched in April
1965, 2% to 3 years after the original interviews.

The objective was to compare the postal inquiry method with the personal interview method
as a means of assessing the prevalence of angina and possible infarction .. ..

The data are given in Table 7.17.

(a)
(b)

(c)

Compute Py, Pc, and k.

Construct a 90% confidence interval for the population value of « (+/var(x)
0.0231).

Group the data in three categories by:

(i) combining PI + AP, PI only, and AP only; (ii) combining the two PI/AP
negatives categories; (iii) leaving “incomplete” as a third category. Recompute
P4, Pc, and k. (This new grouping has the categories “cardiovascular symptoms,”
“no symptoms,” and “incomplete.”)
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Table 7.17 Interview Data for Problem 7.21

Interview
PI AP PI/AP Negative
Postal Inquiry PI¢ + AP¢ Only Only Nonspecific Other Incomplete Total
PI 4 AP 23 15 9 6 — 1 54
PI only 14 18 14 24 8 — 78
AP only 3 5 20 12 17 3 60
PI/AP negative
Nonspecific 2 8 8 54 24 5 101
Other 2 3 5 62 279 1 352
Incomplete — 2 — 22 37 — 61
Total 44 51 56 180 365 10 706
“PI, possible infarction; AP, angina pectoris.
Table 7.18 Interview Results for Problem 7.22
Interview
I- A—
Postal Inquiry? I+ A+ I+ A— I- A+ Nonspecific Other Total
I+ A+ 11 3 1 1 — 16
I+ A— 2 14 — 4 — 20
I- A+ 5 2 7 1 1 16
I- A—
Nonspecific 1 4 5 39 9 58
Other 1 8 6 40 72 127
Total 20 31 19 85 82 237

“I+, positive infarction; I—, negative infarction; A+ and A—, positive or negative indication of angina.

7.22 In a follow-up study, Zeiner-Henriksen [1972b] evaluated the reproducibility of their
method using reinterviews. Table 7.18 shows the results.

(a) Compute P4, Pc, and « for these data.

(b) Construct a 95% confidence interval for the population value of kappa. SE(k) =
0.043.

(c) What is the value of the Z-statistic for testing no association that is computed
from kappa and its estimated standard error /varg(x) = 0.037?

7.23 Weiner et al. [1979] studied men and women with suspected coronary disease. They
were studied by a maximal exercise treadmill test. A positive test (> 1 mm of ST-wave
depression on the exercise electrocardiogram) is thought to be indicative of coronary
artery disease. Disease was classified into zero-, one- (or single-), and multivessel
disease. Among people with chest pain thought probably anginal (i.e., due to coronary
artery disease), the following data are found.
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Vessels Diseased

Category 0 1 Multi-

Males, + test 47 86 227
Males, — test 132 53 49
Females, + test 62 28 44
Females, — test 83 14 9

The disease prevalence is expected to be significantly different in men and women.
We want to see whether the exercise test is related to disease separately for men
and women.

(a) For males, the relationship of 4+ or — test and disease give the data below. Fill
in the missing values, interpret these data, and answer the questions.

Vessels Diseased

Exercise Test 0 1 Multi-

+ 47 86 ?
— 132 ? 49

Expected Adjusted Residuals

108.5 842 1673 0+ 073 0+
70.5 548 ? 0+ 073 0+

Row Percents Column Percents

? ? 63.1 263 619
564 226 209 73.7 381 7

Formulate a question for which the row percents would be a good method of
presenting the data. Formulate a question where the column percents would be
more appropriate.

*7.24 (a) Find the natural logarithms, In x, of the following x: 1.24, 0.63, 0.78, 2.41,
2.7182818, 1.00, 0.10. For what values do you think In x is positive? For what
values do you think In x is negative? (A plot of the values may help.)

(b) Find the exponential, ¢*, of the following x: —2.73, 5.62, 0.00, —0.11, 17.3, 2.45.
When is e* less than 1?7 When is e* greater than 1?

() In(a x b) =1Ina + Inb. Verify this for the following pairs of a and b:

a: 200 036 0.11 0.62
b: 050 142 089 0.77

(d) e®th = ¢ . ¢, Verify this for the following pairs of numbers:

a: =211 0.36 0.88 —1.31
b: 211 159 =267 —-045



PROBLEMS 247
Table 7.19 Angina Data for Problem 7.25
Model? df. LRX? p—Value
[/ 1V1IK] 7 11441 0+
[ 1[K] 6  103.17 0+
/K 1[J] 5 26.32 0+
[I 1IJK] 5 94.89 0+
[1J K] 4 15.08 0.0045
[1J 1[JK] 4 83.65 0+
[IK 1[JK] 3 6.80 0.079
[IJIIKI[JK] 2 2.50 0.286
“I, J, and K refer to variables as in Example 7.5.
Table 7.20 Hypothesis Data for Problem 7.25
Cell (i, j, k) Observed r Fitted u-Parameters
(L1,1) 17 18.74 u=-337
(1,1,2) 86 85.01 ul = —ug =0.503
(1,1,3) 244 243.25 u,’ =-uj =0. 886
(1,2,1) 5 3.26 uf =-0.775,uf = 0. 128 uX =0.903
(122 14 14.99 uth = —u{’z = —ul) =ull = -0.157
(1,2.3) 99 99.75 utk = —uz 1= = —0.728
(2,1,1) 42 40.26 ulf = —u22 =0.143
(2.1,2) 31 31.99 utX ——u23 = 0.586
2,13 37 3775 ul¥ = —u21 =0.145
(2.2, 2 3.74 u{f =—-uf =0.138
(222 4 3.01 W]k = —ufk = —0.283
(2,2,3) 9 8.25
*7.25 Example 7.5 uses Weiner et al. [1979] data for cases with probable angina. The results

*7.26

for the cases with definite angina are given in Table 7.19.

(a) Which models are at all plausible?

(b) The data for the fit of the [IJ]J[/K ][JK] hypothesis are given in Table 7.20.

Using the u-parameters, compute the fitted value for the (1,2,3) cell, showing that
it is (approximately) equal to 99.75 as given.

(c)

Using the fact that hypothesis 7 is nested within hypothesis 8, compute the chi-

square statistic for the additional gain in fit between the models. What is the
p-value (as best as you can tell from the tables)?

As in Problem 7.25, the cases of Example 7.5, but with chest pain thought not to be
due to heart disease (nonischemic), gave the goodness-of-fit likelihood ratio chi-square

statistics shown in Table 7.21.

(a)
(b)

Which model would you prefer? Why?
For model [1J] [IK], the information on the fit is given in Table 7.22.

Using the u-parameter values, verify the fitted value for the (2,1,1) cell.

(©
this problem.

Interpret the probabilistic meaning of the model in words for the variables of
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Table 7.21 Goodness-of-Fit Data for
Problem 7.23

Model df. LRX? p—Value

[Z 1J1 K] 7 3526 0+

[1J ][ K] 6 28.45 0+

[IK 1[J] 5 11.68 0.039

[11[ JK] 5 32.46 0+

[1J [ IK] 4 4.87 0.30

[1J 1 JK] 4 2565 0+

[IK [ JK] 3 8.89 0.031

[IJIKI[JK] 2 247 0.29
Table 7.22 Fit Data for Problem 7.23
Cell (i, j, k) Observed r Fitted u-Parameters
(1,1,1) 33 32.51 u=-3378
(1,1,2) 13 12.01 ul = —uf =0.115
(1,1,3) 7 8.48 uj = —uy = 0.658
(1,2,1) 13 13.49 uf =1364,uf = -0.097, u¥ =—1.267
(1.2,2) 4 4.99 up) = —uth = —ul =ull = -0218
(1,2,3) 5 3.52 uth = —ulk = -0.584
.11 126 128.69 uh = —ul = -0.119
2,1,2) 21 18.75 ul® = —ulk =0.703
(2,1,3) 3 2.56
(2,2,1) 25 2231
(2,2,2) 1 3.25
(2,2,3) 0 0.44

*7.27 Willkens et al. [1981] study possible diagnostic criteria for Reiter’s syndrome. This
rheumatic disease was considered in the context of other rheumatic diseases. Eighty-
three Reiter’s syndrome cases were compared with 136 cases with one of the following
four diagnoses: ankylosing spondylitis, seronegative definite rheumatoid arthritis, pso-
riatic arthritis, and gonococcal arthritis. A large number of potential diagnostic criteria
were considered. Here we consider two factors: the presence or absence of urethritis
and/or cervicitis (for females); and the duration of the initial attack evaluated as greater
than or equal to one month or less than one month. The data are given in Table 7.23,
and the goodness-of-fit statistics are given in Table 7.24.

(a) Fill in the question marks in Table 7.24.

(b) Which model(s) seem plausible (at the 0.05 significance level)?

(c) Since we are looking for criteria to differentiate between Reiter’s syndrome and
the other diseases, one strategy that makes sense is to assume independence of the
disease category ([K]) and then look for the largest departures from the observed
and fitted cells. The model we want is then [/J ][K]. The fit is given in Table 7.25.
Which cell of Reiter’s syndrome cases has the largest excess of observed minus
fitted?

(d) If you use the cell found in part (c) as your criteria for Reiter’s syndrome, what
are the specificity and sensitivity of this diagnostic criteria for these cases?
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Table 7.23 Reiter’s Syndrome Data for Problem 7.27

Initial Attack [J]

Urethritis and/or

Cervicitis [I] 1 Disease [K] <1 Month >1 Month

Yes Reiter’s 2 70
Other 11 3

No Reiter’s 1 10
Other 20 132

Table 7.24 Goodness-of-Fit Data for
Problem 7.27

Model df. LRX? p—Value
([ K] 7 200.65 ?
[1J 1] K] 720041 ?
[IK N[J] ? 40.63 ?
[1 1] JK] 7 18778 ?
[1J [ IK] ? 40.39 ?
[1J [ JK] 7 18755 ?
[IK [ JK] ? 27.76 ?
[IJ W IKI[JK] 7 5.94 ?

Table 7.25 Goodness-of-Fit Data
for Problem 7.27

Cell (i, j, k) Observed Fitted

(1,1,1) 70 24.33
(1,1,2) 3 48.67
(1,2,1) 2 433
(1,2,2) 11 8.67
@,1,1) 10 47.33
2,12) 132 94.67
2.2.1) 1 7.00
(22.2) 20 14.00

*7.28 We claim in the text that the three-factor log-linear model [IJ][ /K] means that the
J and K variables are independent conditionally upon the / variable. Prove this by
showing the following steps:

(a) By definition, Y and Z are independent conditionally upon X if
PlY=jand Z=k|X =i]=P[Y = j|X =i]P[Z =k|X =]

Using the probabilities 7;jx, show that this is equivalent to

Tijk _  Tij- Ti-k
T .. TTj.. T ..
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(b) If the equation above holds true, show that
In ;i —u—i—u +u +”k +u +”zk
where

1
olf =) = 7 Y intiy) — ; Zln@m "t Z > i

i=1 lljl

= In(mix) — - Zln(n, - = Zln(m 0+ Z Zln(n, 9]

tlkl

J K
= ; Zln(mj.) + % Zln(ni.k) — In(w;..) _|_ — Z Zln(”w
j=1 k=1

tl]l

1 I K
+o Zkzlln(m &) = Z In(7;..)

i=1

I J 1
1 1
uJJ = 7 Zln(nij.) 17 ZZln(nij.)
i=1 j=li=l1
1 d | Ko
up = 7 Zln(r[, k) — ﬁ ZZln(ni.k)

i=1 k=1i=1

1 I J 1 1
MZ—HZZIH(T[U EZ

i=1 j=I i=1k=

K

In(zi4) = - Zln(m
1

(c) If the equation above holds, use 7;jx = eM7ijk to show that the first equation then
holds.

*7.29 The notation and models for the three-factor log-linear model extend to larger numbers
of factors. For example, for variables W, X, Y, and Z (denoted by the indices i, j, k,
and /, respectively), the following notation and model correspond:

[1JK][L]-u+u —i—u —l—uk +ul +u +”zk +qu —l—ulIJJkK

(a) For the four-factor model, write the log-linear u-terms corresponding to
the following model notations: (i) [[J][KL]; (i) [IJK]IJLI[JKL]; (iii)
[IJIIKIJKIIL]

(b) Give the bracket notation for the models Corresponding to the u-parameters: (l)
u+u +u —i—uk —i—u,L, (ll) u+u +u —i—uk +ul +u”+uk, ; (iii) u+u +
ul +uf +u, +ufl +uif +u{,L+qu +upk.

*7.30 Verify the values of the contingency coefficients, or measures of association, given in
the first example of Note 7.2.

*7.31 Verify the values of the measures of association given in the second example of
Note 7.2.



REFERENCES 251

*7.32  Prove the following properties of some of the measures of association, or contingency
coefficients, presented in Note 7.2.

(@) 0 <Xic < 1. Show by example that O and 1 are possible values.

(b) 0 <A < 1. Show by example that O and 1 are possible values. What happens if
the two traits are independent in the sample n;; = n;.n.;/n..?

(¢ -1 <y <1. Can y be —1 or +1? If the traits are independent in the sample,
show that y = 0. Can y = 0 otherwise? If yes, give an example.

d 0<C<l.

e 0<V<l

(f) 0<T <1 [use part (e) to show this].

(g) Show by example that ¢ can be larger than 1.

*7.33 Compute the contingency coefficients of Note 7.2, omitting y, for the data of:

(a) Problem 7.1.
(b) Problem 7.5.
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CHAPTER 8

Nonparametric, Distribution-Free,
and Permutation Models: Robust
Procedures

8.1 INTRODUCTION

In Chapter 4 we worked with the normal distribution, noting the fact that many populations
have distributions that are approximately normal. In Chapter 5 we presented elegant one- and
two-sample methods for estimating the mean of a normal distribution, or the difference of the
means, and constructing confidence intervals. We also examined the corresponding tests about
the mean(s) from normally distributed populations. The techniques that we learned are very
useful. Suppose, however, that the population under consideration is not normal. What should
we do? If the population is not normal, is it appropriate to use the same ¢-statistic that applies
when the sample comes from a normally distributed population? If not, is there some other
approach that can be used to analyze such data?

In this chapter we consider such questions. In Section 8.2 we introduce terminology associ-
ated with statistical procedures needing few assumptions and in Section 8.3 we note that some
of the statistical methods that we have already looked at require very few assumptions.

The majority of this chapter is devoted to specific statistical methods that require weaker
assumptions than that of normality. Statistical methods are presented that apply to a wide range
of situations. Methods of constructing statistical tests for specific situations, including computer
simulation, are also discussed. We conclude with

1. An indication of newer research in the topics of this chapter
2. Suggestions for additional reading if you wish to learn more about the subject matter

8.2 ROBUSTNESS: NONPARAMETRIC AND DISTRIBUTION-FREE PROCEDURES

In this section we present terminology associated with statistical procedures that require few
assumptions for their validity.
The first idea we consider is robustness:

Definition 8.1. A statistical procedure is robust if it performs well when the needed assump-
tions are not violated “too badly” or if the procedure performs well for a large family of
probability distributions.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright © 2004 John Wiley & Sons, Inc.
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By a procedure we mean an estimate, a statistical test, or a method of constructing a confi-
dence interval. We elaborate on this definition to give the reader a better idea of the meaning of
the term. The first thing to note is that the definition is not a mathematical definition. We have
talked about a procedure performing “well” but have not given a precise mathematical definition
of what “well” means. The term robust is analogous to beauty: Things may be considered more
or less beautiful. Depending on the specific criteria for beauty, there may be greater or lesser
agreement about the beauty of an object. Similarly, different statisticians may disagree about
the robustness of a particular statistical procedure depending on the probability distributions of
concern and use of the procedure. Nevertheless, as the concept of beauty is useful, the concept
of robustness also proves to be useful conceptually and in discussing the range of applicability
of statistical procedures.

We discuss some of the ways that a statistical test may be robust. Suppose that we have a test
statistic whose distribution is derived for some family of distributions (e.g., normal distributions).
Suppose also that the test is to be applied at a particular significance level, which we designate
the nominal significance level. When other distributions are considered, the actual probability
of rejecting the null hypothesis when it holds may differ from the nominal significance level
if the distribution is not one of those used to derive the statistical test. For example, in testing
for a specific value of the mean with a normally distributed sample, the 7-test may be used.
Suppose, however, that the distribution considered is not normal. Then, if testing at the 5%
significance level, the actual significance level (the true probability of rejecting under the null
hypothesis that the population mean has the hypothesized value) may not be 5%j; it may vary.
A statistical test would be robust over a larger family of distributions if the true significance
level and nominal significance level were close to each other. Also, a statistical test is robust
if under specific alternatives, the probability of rejecting the null hypothesis tends to be large
even when the alternatives are in a more extensive family of probability distributions.

A statistical test may be robust in a particular way for large samples, but not for small
samples. For example, for most distributions, if one uses the ¢-test for the mean when the
sample size becomes quite large, the central limit theory shows that the nominal significance
level is approximately the same as the true significance level when the null hypothesis holds.
On the other hand, if the samples come from a skewed distribution and the sample size is small,
the 7-test can perform quite badly. Lumley et al., [2002] reviewed this issue and reported that
in most cases the ¢-test performs acceptably even with 30 or so observations, and even in a very
extreme example the performance was excellent with 250 observations.

A technique of constructing confidence intervals is robust to the extent that the nominal
confidence level is maintained over a larger family of distributions. For example, return to
the z-test. If we construct 95% confidence intervals for the mean, the method is robust to the
extent that samples from a nonnormal distribution straddle the mean about 95% of the time.
Alternatively, a method of constructing confidence intervals is nonrobust if the confidence with
which the parameters are in the interval differs greatly from the nominal confidence level. An
estimate of a parameter is robust to the extent that the estimate is close to the true parameter
value over a large class of probability distributions.

Turning to a new topic, the normal distribution model is useful for summarizing data, because
two parameters (in this case, the mean and variance, or equivalently, the mean and the standard
deviation) describe the entire distribution. Such a set or family of distribution functions with
each member described (or indexed) by a few parameters is called a parametric family. The
distributions used for test statistics are also parametric families. For example, the ¢-distribution,
the F-distribution, and the x2-distribution depend on one or two integer parameters: the degrees
of freedom. Other examples of parametric families are the binomial distribution, with its two
parameters n and 7, and the Poisson distribution, with its parameter A.

By contrast, semiparametric families and nonparametric families of distributions are families
that cannot be conveniently characterized, or indexed, by a few parameters. For example, if one
looked at all possible continuous distributions, it is not possible to find a few parameters that
characterize all these distributions.
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Definition 8.2. A family of probability distributions that can be characterized by a few
parameters is a parametric family. A family is nonparametric if it can closely approximate any
arbitrary probability distribution. A family of probability distributions that is neither parametric
nor nonparametric is semiparametric.

In small samples the ¢-test holds for the family of normal distributions, that is, for a parametric
family. It would be nice to have a test statistic whose distribution was valid for a larger family
of distributions. In large samples the z-test qualifies, but in small samples it does not.

Definition 8.3. Statistical procedures that hold, or are valid for a nonparametric family of
distributions, are called nonparametric statistical procedures.

The definition of nonparametric here can be made precise in a number of nonequivalent
ways, and no single definition is in universal use. See also Note 8.1. The usefulness of the
t-distribution in small samples results from the fact that samples from a normal distribution give
the same 7-distribution for all normal distributions under the null hypothesis. More generally,
it is very useful to construct a test statistic whose distribution is the same for all members of
some family of distributions. That is, assuming that the sample comes from some member of
the family, and the null hypothesis holds, the statistic has a known distribution; in other words,
the distribution does not depend upon, or is free of, which member of the underlying family of
distributions is sampled. This leads to our next definition.

Definition 8.4. A statistical procedure is distribution-free over a specified family of dis-
tributions if the statistical properties of the procedure do not depend on (or are free of) the
underlying distribution being sampled.

A test statistic is distribution-free if under the null hypothesis, it has the same distribution
for all members of the family. A method of constructing confidence intervals is distribution-free
if the nominal confidence level holds for all members of the underlying family of distributions.

The usefulness of the (unequal variances) ¢-test in large samples results from the fact that
samples from any distribution give the same large-sample normal distribution under the null
hypothesis that the means are equal. That is, the ¢-statistic becomes free of any information
about the shape of the distribution as the sample size increases. This leads to a definition:

Definition 8.5. A statistical procedure is asymptotically distribution-free over a specified
family of distributions if the statistical properties of the procedure do not depend on (or are free
of) the underlying distribution being sampled for sufficiently large sample sizes.

In practice, one selects statistical procedures that hold over a wide class of distributions.
Often, the wide class of distributions is nonparametric, and the resulting statistical proce-
dure is distribution-free for the family. The procedure would then be both nonparametric and
distribution-free. The terms nonparametric and distribution-free are used somewhat loosely and
are often considered interchangeable. The term nonparametric is used much more often than
the term distribution-free.

One would expect that a nonparametric procedure would not have as much statistical power
as a parametric procedure if the sample observed comes from the parametric family. This is
frequently, but not necessarily, true. One method of comparing procedures is to look at their
relative efficiency. Relative efficiency is a complex term when defined precisely (see Note 8.2),
but the essence is contained in the following definition:

Definition 8.6. The relative efficiency of statistical procedure A to statistical procedure B
is the ratio of the sample size needed for B to the sample size needed for A in order that both
procedures have the same statistical power.

For example, if the relative efficiency of A to B is 1.5, then B needs 50% more observations
than A to get the same amount of statistical power.
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8.3 SIGN TEST

Suppose that we are testing a drug to reduce blood pressure using a crossover design with a
placebo. We might analyze the data by taking the blood pressure while not on the drug and
subtracting it from the blood pressure while on the drug. These differences resulting from the
matched or paired data will have an expected mean of zero if the drug under consideration
had no more effect than the placebo effect. If we want to assume normality, a one-sample
t-test with a hypothesized mean of zero is appropriate. Suppose, however, that we knew from
past experience that there were occasional large fluctuations in blood pressure due to biological
variability. If the sample size were small enough that only one or two such fluctuations were
expected, we would be hesitant to use the z-test because of the known fact that one or two large
observations, or outliers, destroyed the probability distribution of the test (see Problem 8.20).
What should we do?

An alternative nonparametric way of analyzing the data is the following. Suppose that there is
no treatment effect. All of the difference between the blood pressures measured on-drug and on-
placebo will be due to biological variability. Thus, the difference between the two measurements
will be due to symmetric random variability; the number is equally likely to be positive or
negative. The sign fest is appropriate for the null hypothesis that observed values have the same
probability of being positive or negative: If we look at the number of positive numbers among the
differences (and exclude values equal to zero), under the null hypothesis of no drug effect, this
number has a binomial distribution, with 7 = % A test of the null hypothesis could be a test of the
binomial parameter m = % This was discussed in Chapter 6 when we considered McNemar’s
test. Such tests are called sign fests, since we are looking at the sign of the difference.

Definition 8.7. Tests based on the sign of an observation (i.e., plus or minus), and which
test the hypothesis that the observation is equally likely to be a plus or minus, are called sign
test procedures.

Note that it is possible to use a sign test in situations where numbers are not observed, but
there is only a rating. For example, one could have a blinded evaluation of patients as worse on-
drug than on-placebo, the same on-drug as on-placebo, and better on-drug than on-placebo. By
considering only those who were better or worse on the drug, the null hypothesis of no effect is
equivalent to testing that each outcome is equally likely; that is, the binomial probability is 1/2,
the sign test may be used. Ratings of this type are useful in evaluating drugs when numerical
quantification is not available. As tests of 7 = % for binomial random variables were discussed
in Chapter 6, we will not elaborate here. Problems 8.1 to 8.3 use the sign test.

Suppose that the distribution of blood pressures did follow a normal distribution: How much
would be lost in the way of efficiency by using the sign test? We can answer this question
mathematically in large sample sizes. The relative efficiency of the sign test with respect to
the 7-test when the normal assumptions are satisfied is 0.64; that is, compared to analyzing
data using the z-test, 36% of the samples are effectively thrown away. Alternatively, one needs
1/0.64, or 1.56 times as many observations for the sign test as one would need using the 7-test
to have the same statistical power in a normal distribution. On the other hand, if the data came
from a different mathematical distribution, the Laplace or double exponential distribution, the
sign test would be more efficient than the 7-test.

In some cases a more serious price paid by switching to the sign test is that a different
scientific question is being answered. With the #-test we are asking whether the average blood
pressure is lower on drug than on placebo; with the sign test we are asking whether the majority
of patients have lower blood pressure on drug than on placebo. The answers may be different
and it is important to consider which is the more important question.

The sign test is useful in many situations. It is a “quick-and-dirty” test that one may compute
mentally without the use of computational equipment; provided that statistical tables are avail-
able, you can get a quick estimate of the statistical significance of an appropriate null hypothesis.
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8.4 RANKS

Many of the nonparametric, distribution-free tests are based on one simple and brilliant idea.
The approach is motivated by an example.

Example 8.1. The following data are for people who are exercised on a treadmill to their
maximum capacity. There were five people in a group that underwent heavy distance-running
training and five control subjects who were sedentary and not trained. The maximum oxygen
intake rate adjusted for body weight is measured in mL/kg per minute. The quantity is called
VOomax- The values for the untrained subjects were 45, 38, 48, 49, and 51. The values for the
trained subjects were 63, 55, 59, 65, and 77. Because of the larger spread among the trained
subjects, especially one extremely large VOxpax (as can be seen from Figure 8.1), the values
do not look like they are normally distributed. On the other hand, it certainly appears that the
training has some benefits, since the five trained persons all exceed the treadmill times of the five
sedentary persons. Although we do not want to assume that the values are normally distributed,
we should somehow use the fact that the larger observations come from one group and the
smaller observations come from the other group. We desire a statistical test whose distribution
can be tabulated under the null hypothesis that the probability distributions are the same in the
two groups.

The crucial idea is the rank of the observation, which is the position of the observation
among the other observations when they are arranged in order.

Definition 8.8. The rank of an observation, among a set of observations, is its position when
the observations are arranged from smallest to largest. The smallest observation has rank 1, the
next smallest has rank 2, and so on. If observations are tied, the rank assigned is the average of
the ranks appropriate to the equal numbers.

For example, the ranks of the 10 observations given above would be found as follows:
first, order the observations from the smallest to largest; then number them from left to right,
beginning at 1.

Observation 38 45 48 49 51 55 59 63 65 77
Rank 1 2 3 4 5 6 7 8 9 10

We now consider several of the benefits of using ranks. In the example above, suppose
there was no difference in the VO, max value between the two populations. Then we have 10
independent samples (five from each population). Since there would be nothing to distinguish
between observations, the five observations from the set of people who experienced training
would be equally likely to be any five of the given observations. That is, if we consider the

Untrained | Trained
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Figure 8.1 VO, \ax in trained and untrained persons.
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ranks from 1 to 10, all subsets of size 5 would be equally likely to represent the ranks of the five
trained subjects. This is true regardless of the underlying distribution of the 10 observations.

We repeat for emphasis: If we consider continuous probability distributions (so that there are
no ties) under the null hypothesis that two groups of observations come from the same distribution,
the ranks have the same distribution! Thus, tests based on the ranks will be nonparametric tests
over the family of continuous probability distributions. Another way of making the same point:
Any test that results from using the ranks will be distribution-free, because the distribution of
the ranks does not depend on the underlying probability distribution under the null hypothesis.

There is a price to be paid in using rank tests. If we have a small number of observations, say
two in each group, even if the two observations in one group are larger than both observations in
the other group, a rank test will not allow rejection of the null hypothesis that the distributions
are the same. On the other hand, if one knows that the data are approximately normally dis-
tributed if the two large observations are considerably larger than the smaller observations, the
t-test would allow one to reject the null hypothesis that the distributions are the same. However,
this increased statistical power in tiny samples critically depends on the normality assumptions.
With small sample sizes, one cannot check the adequacy of the assumptions. One may reject the
null hypothesis incorrectly (when, in fact, the two distributions are the same) because a large
outlying value is observed. This price is specific to small samples: In large samples a partic-
ular rank-based test may be more or less powerful than the ¢-test. Note 8.6 describes another
disadvantage of rank tests.

Many nonparametric statistical tests can be devised using the simple idea of ranks. In the
next three sections of this chapter we present specific rank tests of certain hypotheses.

8.5 WILCOXON SIGNED RANK TEST

In this section we consider our first rank test. The test is an alternative to the one-sample 7-test.
Whenever the one-sample 7-test of Chapter 5 is appropriate, this test may also be used, as its
assumptions will be satisfied. However, since the test is a nonparametric test, its assumptions
will be satisfied much more generally than under the assumptions needed for the one-sample
t-test. In this section we first discuss the needed assumptions and null hypothesis for this test.
The test itself is then presented and illustrated by an example. For large sample sizes, the value
of the test statistic may be approximated by a standard normal distribution; the appropriate
procedure for this is also presented.

8.5.1 Assumptions and Null Hypotheses

The signed rank test is appropriate for statistically independent observations. The null hypothesis
to be tested is that each observation comes from a distribution that is symmetric with a mean of
zero. That is, for any particular observation, the value is equally likely to be positive or negative.

For the one-sample ¢-test, we have independent observations from a normal distribution;
suppose that the null hypothesis to be tested has a mean of zero. When the mean is zero, the
distribution is symmetric about zero, and positive or negative values are equally likely. Thus, the
signed rank test may be used wherever the one-sample ¢-test of mean zero is appropriate. For
large sample sizes, the signed rank test has an efficiency of 0.955 relative to the ¢-test; the price
paid for using this nonparametric test is equivalent to losing only 4.5% of the observations. In
addition, when the normal assumptions for the z-test hold and the mean is not zero, the signed
rank test has equivalent statistical power.

An example where the signed rank test is appropriate is a crossover experiment with a drug
and a placebo. Suppose that subjects have the sequence “placebo, then drug” or “drug, then
placebo,” each assigned at random, with a probability of 0.5. The null hypothesis of interest is
that the drug has the same effect as the placebo. If one takes the difference between measurements
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taken on the drug and on the placebo, and if the treatment has no effect, the distribution of the dif-
ference will not depend on whether the drug was given first or second. The probability is one-half
that the placebo was given first and that the observation being looked at is the second observation
minus the first observation. The probability is also 1/2 that the observation being examined came
from a person who took the drug first. In this case, the observation being used in the signed rank
test would be the first observation minus the second observation. Since under the null hypoth-
esis, these two differences have the same distribution except for a minus sign, the distribution
of observations under the null hypothesis of “no treatment effect” is symmetric about zero.

8.5.2 Alternative Hypotheses Tested with Power

To use the test, we need to know what type of alternative hypotheses may be detected with
some statistical power. For example, suppose that one is measuring blood pressure, and the
drug supposedly lowers the blood pressure compared to a placebo. The difference between the
measurements on the drug and the blood pressure will tend to be negative. If we look at the
observations, two things will occur. First, there will tend to be more observations that have a
negative value (i.e., a minus sign) than expected by chance. Second, if we look at the values
of the data, the largest absolute values will tend to be negative values. The differences that are
positive will usually have smaller absolute values. The signed rank test is designed to use both
sorts of information. The signed rank statistic is designed to have power where the alternatives
of interest correspond roughly to a shift of the distribution (e.g., the median, rather than being
zero, is positive or negative).

8.5.3 Computation of the Test Statistic
We compute the signed rank statistic as follows:

1. Rank the absolute values of the observations from smallest to largest. Note that we do
not rank the observations themselves, but rather, the absolute values; that is, we ignore
minus signs. Drop observations equal to zero.

2. Add up the values of the ranks assigned to the positive observations. Do the same to the
negative observations. The smaller of the two values is the value of the Wilcoxon signed
rank statistic used in Table A.9 in the Appendix.

The procedure is illustrated in the following example.

Example 8.2. Brown and Hurlock [1975] investigated three methods of preparing the
breasts for breastfeeding. The methods were:

1. Toughening the skin of the nipple by nipple friction or rolling
2. Creams to soften and lubricate the nipple
3. Prenatal expression of the first milk secreted before or after birth (colostrum)

Each subject had one randomly chosen treated breast and one untreated breast. Nineteen
different subjects were randomized to each of three treatment groups; that is, each subject
received the three treatments in random order. The purpose of the study was to evaluate methods
of preventing postnatal nipple pain and trauma. The effects were evaluated by the mothers
filling out a subjective questionnaire rating nipple sensitivity from “comfortable” (1) to “painful”
(2) after each feeding. The data are presented in Table 8.1.

We use the signed rank test to examine the statistical significance of the nipple-rolling data.
The first step is to rank the absolute values of the observations, omitting zero values. The
observations ranked by absolute value and their ranks are given in Table 8.2.

Note the tied absolute values corresponding to ranks 4 and 5. The average rank 4.5 is used
for both observations. Also note that two zero observations were dropped.
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Table 8.1 Mean Subjective Difference between Treated
and Untreated Breasts

Nipple Rolling  Masse Cream  Expression of Colostrum

—0.525 0.026 —0.006
0.172 0.739 0.000
—0.577 —0.095 —0.257
0.200 —0.040 —0.070
0.040 0.006 0.107
—0.143 —0.600 0.362
0.043 0.007 —0.263
0.010 0.008 0.010
0.000 0.000 —0.080
—0.522 —0.100 —0.010
0.007 0.000 0.048
—0.122 0.000 0.300
—0.040 0.060 0.182
0.000 —0.180 —0.378
—0.100 0.000 -0.075
0.050 0.040 —0.040
—0.575 0.080 —0.080
0.031 —0.450 —0.100
—0.060 0.000 —0.020

Source: Data from Brown and Hurlock [1975].

Table 8.2 Ranked Observation Data

Observation  Rank | Observation Rank
0.007 1 —-0.122 10
0.010 2 —0.143 11
0.031 3 0.172 12
0.040 4.5 0.200 13

—0.040 4.5 —0.522 14
0.043 6 —0.525 15
0.050 7 —0.575 16

—0.060 8 —-0.577 17

—0.100 9

The sum of the ranks of the positive numbers is § = 1+2+3+4.54+64+7+412+13 = 48.5.
This is less than the sum of the negative ranks. For a sample size of 17, Table A.9 shows that the
two-sided p-value is > 0.10. If there are no ties, Owen [1962] shows that P[S > 48.5] = 0.1
and the two-sided p-value is 0.2. No treatment effect has been shown.

8.5.4 Large Samples

When the number of observations is moderate to large, we may compute a statistic that has
approximately a standard normal distribution under the null hypothesis. We do this by subtracting
the mean under the null hypothesis from the observed signed rank statistic, and dividing by the
standard deviation under the null hypothesis. Here we do not take the minimum of the sums of
positive and negative ranks; the usual one- and two-sided normal procedures can be used. The
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mean and variance under the null hypothesis are given in the following two equations:

B = "D (1)
var(S) = W 2)

From this, one gets the following statistic, which is approximately normally distributed for
large sample sizes:

7 - S —E(S)
N Jvar(S)

Sometimes, data are recorded on such a scale that ties can occur for the absolute values. In
this case, tables for the signed rank test are conservative; that is, the probability of rejecting
the null hypothesis when it is true is less than the nominal significance level. The asymptotic
statistic may be adjusted for the presence of ties. The effect of ties is to reduce the variance
in the statistic. The rank of a term involved in a tie is replaced by the average of the ranks of
those tied observations. Consider, for example, the following data:

3)

6,—-6,-2,0,1,2,5,6,6, -3, -3,-2,0

Note that there are not only some ties, but zeros. In the case of zeros, the zero observations
are omitted from the computation as noted before. These data, ranked by absolute value, with
average ranks replacing the given rank when the absolute values are tied, are shown below. The
first row (A) represents the data ranked by absolute value, omitting zero values; the second row
(B) gives the ranks; and the third row (C) gives the ranks, with ties averaged (in this row, ranks
of positive numbers are shown in bold type):

A|j1r -22 -2 -3 -3 5 6 -6 6 6

B|1 2 3 4 5 6 7 8 9 10 11

Cc |1 3 3 3 55 55 7 95 95 95 95

Note that the ties are with respect to the absolute value (without regard to sign). Thus the
three ranks corresponding to observations of —2 and +2 are 2, 3, and 4, the average of which
is 3. The S-statistic is computed by adding the ranks for the positive values. In this case,

S=14+3+74+95+954+95=395

Before computing the asymptotic statistic, the variance of S must be adjusted because of
the ties. To make this adjustment, we need to know the number of groups that have ties and
the number of ties in each group. In looking at the data above, we see that there are three
sets of ties, corresponding to absolute values 2, 3, and 6. The number of ties corresponding to
observations of absolute value 2 (the “2 group”) is 3; the number of ties in the “3 group” is 2;
and the number of ties in the “6 group” is 4. In general, let g be the number of groups of ties,
and let #;, where i goes from 1 to g, be the number of observations involved in the particular
group. In this case,

n=3  nh=2 =4  q=3
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In general, the variance of S is reduced according to the equation:

nn+DRn+1)— 330 it — D6+ 1)

var(S) = o

“

For the data that we are working with, we started with 13 observations, but the n used for
the test statistic is 11, since two zeros were eliminated. In this case, the expected mean and
variance are

12
E(S) =11x ?=33

11><12><23—%(3><2><4+2><1><3+4><3><5)
24

=135.6

var(S) =

Using test statistic S gives

,_S—E® _395-33 .
T S~ars)  J1356

With a Z-value of only 0.56, one would not reject the null hypothesis for commonly used
values of the significance level. For testing at a 0.05 significance level, if n is 15 or larger with
few ties, the normal approximation may reasonably be used. Note 8.4 and Problem 8.22 have
more information about the distribution of the signed-rank test.

Example 8.2. (continued) We compute the asymptotic Z-statistic for the signed rank test
using the data given. In this case, n = 17 after eliminating zero values. We have one set of two
tied values, so that ¢ = 1 and #; = 2. The null hypothesis mean is 17 x 18/4 = 76.5. This vari-
ance is [17 x 18 x 35— (1/2) x 2 x 1 x 3]/24 = 446.125. Therefore, Z = (48.5—76.5)/21.12 =
—1.326. Table A.9 shows that a two-sided p is about 0.186. This agrees with p = 0.2 as given
above from tables for the distribution of S.

8.6 WILCOXON (MANN-WHITNEY) TWO-SAMPLE TEST

Our second example of a rank test is designed for use in the two-sample problem. Given samples
from two different populations, the statistic tests the hypothesis that the distributions of the two
populations are the same. The test may be used whenever the two-sample ¢-test is appropriate.
Since the test given depends upon the ranks, it is nonparametric and may be used more generally.
In this section, we discuss the null hypothesis to be tested, and the efficiency of the test relative to
the two-sample 7-test. The test statistic is presented and illustrated by two examples. The large-
sample approximation to the statistic is given. Finally, the relationship between two equivalent
statistics, the Wilcoxon statistic and the Mann—Whitney statistic, is discussed.

8.6.1 Null Hypothesis, Alternatives, and Power

The null hypothesis tested is that each of two independent samples has the same probability
distribution. Table A.10 for the Mann—Whitney two-sample statistic assumes that there are no
ties. Whenever the two-sample 7-test may be used, the Wilcoxon statistic may also be used. The
statistic is designed to have statistical power in situations where the alternative of interest has
one population with generally larger values than the other. This occurs, for example, when the
two distributions are normally distributed, but the means differ. For normal distributions with a
shift in the mean, the efficiency of the Wilcoxon test relative to the two-sample z-test is 0.955.



WILCOXON (MANN-WHITNEY) TWO-SAMPLE TEST 263

For other distributions with a shift in the mean, the Wilcoxon test will have relative efficiency
near 1 if the distribution is light-tailed and greater than 1 if the distribution is heavy-tailed.

However, as the Wilcoxon test is designed to be less sensitive to extreme values, it will
have less power against an alternative that adds a few extreme values to the data. For example,
a pollutant that generally had a normally distributed concentration might have occasional very
high values, indicating an illegal release by a factory. The Wilcoxon test would be a poor
choice if this were the alternative hypothesis. Johnson et al. [1987] shows that a quantile test
(see Note 8.5) is more powerful than the Wilcoxon test against the alternative of a shift in the
extreme values, and the U.S. EPA [1994] has recommended using this test. In large samples a
t-test might also be more powerful than the Wilcoxon test for this alternative.

8.6.2 Test Statistic

The test statistic itself is easy to compute. The combined sample of observations from both
populations are ordered from the smallest observation to the largest. The sum of the ranks of
the population with the smaller sample size (or in the case of equal sample sizes, an arbitrarily
designated first population) gives the value of the Wilcoxon statistic.

To evaluate the statistic, we use some notation. Let m be the number of observations for the
smaller sample, and n the number of observations in the larger sample. The Wilcoxon statistic
W is the sum of the ranks of the m observations when both sets of observations are ranked
together.

The computation is illustrated in the following example:

Example 8.3. This example deals with a small subset of data from the Coronary Artery
Surgery Study [CASS, 1981]. Patients were studied for suspected or proven coronary artery
disease. The disease was diagnosed by coronary angiography. In coronary angiography, a tube
is placed into the aorta (where the blood leaves the heart) and a dye is injected into the arteries
of the heart, allowing x-ray motion pictures (angiograms) of the arteries. If an artery is narrowed
by 70% or more, the artery is considered significantly diseased. The heart has three major arterial
systems, so the disease (or lack thereof) is classified as zero-, one-, two-, or three-vessel disease
(abbreviated OVD, 1VD, 2VD, and 3VD). Narrowed vessels do not allow as much blood to give
oxygen and nutrients to the heart. This leads to chest pain (angina) and total blockage of arteries,
killing a portion of the heart (called a heart attack or myocardial infarction). For those reasons,
one does not expect people with disease to be able to exercise vigorously. Some subjects in
CASS were evaluated by running on a treadmill to their maximal exercise performance. The
treadmill increases in speed and slope according to a set schedule. The total time on the treadmill
is a measure of exercise capacity. The data that follow present treadmill time in seconds for men
with normal arteries (but suspected coronary artery disease) and men with three-vessel disease
are as follows:

Normal‘1014 684 810 990 840 978 1002 1111

3VD ‘ 864 636 638 708 786 600 1320 750 594 750

Note that m = 8 (normal arteries) and n = 10 (three-vessel disease). The first step is to rank
the combined sample and assign ranks, as in Table 8.3. The sum of the ranks of the smaller
normal group is 101. Table A.10, for the closely related Mann—Whitney statistic of Section 8.6.4,
shows that we reject the null hypothesis of equal population distributions at a 5% significance
level.

Under the null hypothesis, the expected value of the Wilcoxon statistic is

E(W) = W 5)
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Table 8.3 Ranking Data for Example 8.3

Value Rank  Group Value Rank  Group Value Rank  Group
594 1 3VD 750 7.5 3VD 978 13 Normal
600 2 3VD 750 7.5 3VD 990 14 Normal
636 3 3VvD 786 9 3VD 1002 15 Normal
638 4 3VD 810 10 Normal | 1014 16 Normal
684 5 Normal 840 11 Normal 1111 17 Normal
708 6 3VD 864 12 3VD 1320 18 3VD

In this case, the expected value is 76. As we conjectured (before seeing the data) that the
normal persons would exercise longer (i.e., W would be large), a one-sided test that rejects
the null hypothesis if W is too large might have been used. Table A.10 shows that at the 5%
significance level, we would have rejected the null hypothesis using the one-sided test. (This is
also clear, since the more-stringent two-sided test rejected the null hypothesis.)

8.6.3 Large-Sample Approximation

There is a large-sample approximation to the Wilcoxon statistic (W) under the null hypothesis
that the two samples come from the same distribution. The approximation may fail to hold if
the distributions are different, even if neither has systematically larger or smaller values. The
mean and variance of W, with or without ties, is given by equations (5) through (7). In these
equations, m is the size of the smaller group (the number of ranks being added to give W), n
the number of observations in the larger group, ¢ the number of groups of tied observations (as
discussed in Section 8.6.2), and #; the number of ranks that are tied in the ith set of ties. First,
without ties,

_mn(m+n+1)
var(W) = 1 6)
and with ties,
_mn(m+n+1) ’ " A mn
Var(W) = T - |:; tz (tl - l)(tl + l):| 12(m +n)(m +n— 1) (7)

Using these values, an asymptotic statistic with an approximately standard normal distribu-
tion is
_W—=EW)
T Svar(W)

Example 8.3. (continued) The normal approximation is best used when n > 15 and m >
15. Here, however, we compute the asymptotic statistic for the data of Example 8.3.

z (®)

8(10+8 +1
E(W) = % =76
8108+ 10+ 1 810
var(W) = 8- 106+ 10+ D —22-D@2+1)
12 128 + 10)(8 + 10+ 1)
= 126.67 — 0.12 = 126.55
101
_I0=T6 L5,
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The one-sided p-value is 0.013, and the two-sided p-value is 2(0.013) = 0.026. In fact, the
exact one-sided p-value is 0.013. Note that the correction for ties leaves the variance virtually
unchanged.

Example 8.4. The Wilcoxon test may be used for data that are ordered and ordinal. Consider
the angiographic findings from the CASS [1981] study for men and women in Table 8.4. Let us
test whether the distribution of disease is the same in the men and women studied in the CASS
registry.

You probably recognize that this is a contingency table, and the x2-test may be applied. If
we want to examine the possibility of a trend in the proportions, the x2-test for trend could
be used. That test assumes that the proportion of females changes in a linear fashion between
categories. Another approach is to use the Wilcoxon test as described here.

The observations may be ranked by the six categories (none, mild, moderate, 1VD, 2VD,
and 3VD). There are many ties: 4517 ties for the lowest rank, 1396 ties for the next rank, and so
on. We need to compute the average rank for each of the six categories. If J observations have
come before a category with K tied observations, the average rank for the k tied observations is

2J+K+1

average rank = 2

®

For these data, the average ranks are computed as follows:

K J Average K J Average
4,517 0 2,259 | 4,907 6,860 9,314
1,396 4,517 5,2155 | 5339 11,767 14,437

947 5913 6,387 | 6,997 17,106 20,605

Now our smaller sample of females has 2360 observations with rank 2259, 572 observations
with rank 5215.5, and so on. Thus, the sum of the ranks is

W = 2360(2259) + 572(5215.5) + 291(6387) + 1020(9314) + 835(14,437) + 882(20,605)
= 49,901,908

The expected value from equation (5) is

5960(5960 + 18,143 + 1)

EW) = 2

= 71,829,920

Table 8.4 Extent of Coronary Artery
Disease by Gender

Extent of Disease Male Female Total
None 2,157 2,360 4,517
Mild 824 572 1,396
Moderate 656 2901 947
Significant

1VD 3,887 1,020 4,907

2VD 4,504 835 5,339

3VD 6,115 882 6,997
Total 18,143 5,960 24,103

Source: Data from CASS [1981].
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From equation (7), the variance, taking into account ties, is

5960 + 18,143 + 1
var(W) = 5960 x 18,143 x %
5960 x 18,143

12 x 20,103 x 20,102

—(4517 x 4516 x 4518 4 - - - + 6997 x 6996 x 6998)

=2.06 x 10"

From this,

_W-EW) .
= 7—Var(W) = —48.29

The p-value is extremely small and the population distributions clearly differ.

8.6.4 Mann-Whitney Statistic

Mann and Whitney developed a test statistic that is equivalent to the Wilcoxon test statistic.
To obtain the value for the Mann—Whitney test, which we denote by U, one arranges the
observations from the smallest to the largest. The statistic U is obtained by counting the number
of times an observation from the group with the smallest number of observations precedes an
observation from the second group. With no ties, the statistics U and W are related by the
following equation:

2 1
U+W=@ (10)

Since the two statistics add to a constant, using one of them is equivalent to using the other. We
have used the Wilcoxon statistic because it is easier to compute by hand. The values of the two
statistics are so closely related that books of statistical tables contain tables for only one of the
two statistics, since the transformation from one to the other is almost immediate. Table A.10
is for the Mann—Whitney statistic.

To use the table for Example 8.3, the Mann—Whitney statistic would be

_ 8[842(10) + 1]
=

U 101 =116 —101 =15

From Table A.10, the two-sided 5% significance levels are given by the tabulated values and
mn minus the tabulated value. The tabulated two-sided value is 63, and 8 x 10 — 63 = 17. We
do reject for a two-sided 5% test. For a one-sided test, the upper critical value is 60; we want
the lower critical value of 8 x 10 — 60 = 20. Clearly, again we reject at the 5% significance
level.

8.7 KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST

Definition 3.9 showed one method of describing the distributions of values from a population:
the empirical cumulative distribution. For each value on the real line, the empirical cumulative
distribution gives the proportion of observations less than or equal to that value. One visual
way of comparing two population samples would be a graph of the two empirical cumulative
distributions. If the two empirical cumulative distributions differ greatly, one would suspect that
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the populations being sampled were not the same. If the two curves were quite close, it would
be reasonable to assume that the underlying population distributions were essentially the same.

The Kolmogorov—Smirnov statistic is based on this observation. The value of the statistic is
the maximum absolute difference between the two empirical cumulative distribution functions.
Note 8.7 discusses the fact that the Kolmogorov—Smirnov statistic is a rank test. Consequently,
the test is a nonparametric test of the null hypothesis that the two distributions are the same.
When the two distributions have the same shape but different locations, the Kolmogorov—
Smirnov statistic is far less powerful than the Wilcoxon rank-sum test (or the z-test if it applies),
but the Kolmogorov—Smirnov test can pick up any differences between distributions, whatever
their form.

The procedure is illustrated in the following example:

Example 8.4. (continued) The data of Example 8.3 are used to illustrate the statistic. Using
the method of Chapter 3, Figure 8.2 was constructed with both distribution functions.

From Figure 8.2 we see that the maximum difference is 0.675 between 786 and 810. Tables
of the statistic are usually tabulated not in terms of the maximum absolute difference D, but
in terms of (mn/d)D or mnD, where m and n are the two sample sizes and d is the lowest
common denominator of m and n. The benefit of this is that (mn/d)D or mnD is always an
integer. In this case, m = 8, n = 10, and d = 2. Thus, (mn/d)D = (8)(10/2)(0.675) = 27
and mnD = 54. Table 44 of Odeh et al. [1977] gives the 0.05 critical value for mnD as
48. Since 54 > 48, we reject the null hypothesis at the 5% significance level. Tables of
critical values are not given in this book but are available in standard tables (e.g., Odeh
et al. [1977]; Owen [1962]; Beyer [1990]) and most statistics packages. The tables are designed
for the case with no ties. If there are ties, the test is conservative; that is, the probabil-
ity of rejecting the null hypothesis when it is true is even less than the nominal signifi-
cance level.
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Figure 8.2 Empirical cumulative distributions for the data of Example 8.3.
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The large-sample distribution of D is known. Let n and m both be large, say, both 40 or
more. The large-sample test rejects the null hypothesis according to the following table:

Significance Level Reject the Null Hypothesis if:

0.001 KS > 1.95
0.01 KS > 1.63
0.05 KS > 1.36
0.10 KS > 1.22

KS is defined as

[ nm [ nm
KS =max .| ——|F,(x) — G,,(x)| = D (1D
X n—+m n+m

where F, and G,, are the two empirical cumulative distributions.

8.8 NONPARAMETRIC ESTIMATION AND CONFIDENCE INTERVALS

Many nonparametric tests have associated estimates of parameters. Confidence intervals for
these estimates are also often available. In this section we present two estimates associated with
the Wilcoxon (or Mann—Whitney) two-sample test statistic. We also show how to construct a
confidence interval for the median of a distribution.

In considering the Mann—Whitney test statistic described in Section 8.6, let us suppose that
the sample from the first population was denoted by X’s, and the sample from the second
population by Y’s. Suppose that we observe mX’s and nY’s. The Mann—Whitney test statistic
U is the number of times an X was less than a ¥ among the nmX and Y pairs. As shown
in equation (12), the Mann—Whitney test statistic U, when divided by mn, gives an unbiased
estimate of the probability that X is less than Y.

U
E (—) =P[X <Y] (12)
mn

Further, an approximate 100(1 — «)% confidence interval for the probability that X is less than
Y may be constructed using the asymptotic normality of the Mann—Whitney test statistic. The
confidence interval is given by the following equation:

U 1 U U
—t Zi | (1= — (13)
mn min(m, n) mn mn

In large samples this interval tends to be too long, but in small samples it can be too short if
U/mn is close to 0 or 1 [Church and Harris, 1970]. In Section 8.10.2 we show another way to
estimate a confidence interval.

Example 8.5. This example illustrates use of the Mann—Whitney test statistic to estimate
the probability that X is less than Y and to find a 95% confidence interval for P[X < Y].

Examine the normal/3VD data in Example 8.3. We shall estimate the probability that the
treadmill time of a randomly chosen person with normal arteries is less than that of a three-vessel
disease patient.
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Note that 1014 is less than one three-vessel treadmill time; 684 is less than 6 of the three-
vessel treadmill times, and so on. Thus,

U=14+6+2+14+2+1+14+1=15

We also could have found U by using equation (9) and W = 101 from Example 8.3. Our
estimate of P[X < Y]is 15/(8 x 10) = 0.1875. The confidence interval is

1
0.1875 £ (1.96)\/§(0.1875)(1 —0.1875) = 0.1875 £ 0.2704

We see that the lower limit of the confidence interval is below zero. As zero is the minimum
possible value for P[X < Y], the confidence interval could be rounded off to [0, 0.458].

If it is known that the underlying population distributions of X and Y are the same shape
and differ only by a shift in means, it is possible to use the Wilcoxon test (or any other rank
test) to construct a confidence interval. This is an example of a semiparametric procedure: it
does not require the underlying distributions to be known up to a few parameters, but it does
impose strong assumptions on them and so is not nonparametric. The procedure is to perform
Wilcoxon tests of X + & vs. Y to find values of § at which the p-value is exactly 0.05. These
values of § give a 95% confidence interval for the difference in locations.

Many statistical packages will compute this confidence interval and may not warn the user
about the assumption that the distributions have the same shape but a different location. In the
data from Example 8.5, the assumption does not look plausible: The treadmill times for patients
with three-vessel disease are generally lower but with one outlier that is higher than the times
for all the normal subjects.

In Chapter 3 we saw how to estimate the median of a distribution. We now show how to
construct a confidence interval for the median that will hold for any distribution. To do this, we
use order statistics.

Definition 8.9. Suppose that one observes a sample. Arrange the sample from the smallest
to the largest number. The smallest number is the first-order statistic, the second smallest is the
second-order statistic, and so on; in general, the ith-order statistic is the ith number in line.

The notation used for an order statistic is to put the subscript corresponding to the particular
order statistic in parentheses. That is,

Xn=Xp=---=Xu

To find a 100(1 — @)% confidence interval for the median, we first find from tables of the
binomial distribution with 7 = 0.5, the largest value of k such that the probability of k or fewer
successes is less than or equal to «/2. That is, we choose k to be the largest value of k such
that

P[number of heads in n flips of a fair coin=0or 1 or...or k] <

N[ R

Given the value of k, the confidence interval for the median is the interval between the
(k + 1)- and (n — k)-order statistics. That is, the interval is

Xk+1)> X(n—k))
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Example 8.6. The treadmill times of 20 females with normal or minimal coronary artery
disease in the CASS study are

570, 618, 30, 780, 630, 738, 900, 750, 750, 540, 660,
780, 720, 750, 936, 900, 762, 840, 816, 690

We estimate the median time and construct a 90% confidence interval for the median of this
population distribution. The order statistics (ordered observations) from 1 to 20 are

30, 540, 570, 618, 630, 660, 690, 720, 738, 750, 750,
750, 762, 780, 780, 816, 840, 900, 900, 936

Since we have an odd number of observations,

Xao) + Xan _ 750+ 750
2 B 2

If X is binomial, n = 20 and w = 0.5, P[X < 5] = 0.0207 and P[X < 6] = 0.0577. Thus,
k = 5. Now, X ) = 690 and X(;5) = 780. Hence, the confidence interval is (690, 780). The
actual confidence is 100(1 — 2 x 0.0207)% = 95.9%. Because of the discrete nature of the data,
the nominal 90% confidence interval is also a 95.9% confidence interval.

median = =750

*8.9 PERMUTATION AND RANDOMIZATION TESTS

In this section we present a method that may be used to generate a wide variety of statistical
procedures. The arguments involved are subtle; you need to pay careful attention to understand
the logic. We illustrate the idea by working from an example.

Suppose that one had two samples, one of size n and one of size m. Consider the null
hypothesis that the distributions of the two populations are the same. Let us suppose that, in
fact, this null hypothesis is true; the combined n + m observations are independent and sampled
from the same population. Suppose now that you are told that one of the n 4+ m observations
is equal to 10. Which of the n + m observations is most likely to have taken the value 10?
There is really nothing to distinguish the observations, since they are all taken from the same
distribution or population. Thus, any of the n + m observations is equally likely to be the one
that was equal to 10. More generally, suppose that our samples are taken in a known order;
for example, the first n observations come from the first population and the next m from the
second. Let us suppose that the null hypothesis still holds. Suppose that you are now given the
observed values in the sample, all n + m of them, but not told which value was obtained from
which ordered observation. Which arrangement is most likely? Since all the observations come
from the same distribution, and the observations are independent, there is nothing that would
tend to associate any one sequence or arrangement of the numbers with a higher probability than
any other sequence. In other words, every assignment of the observed numbers to the n + m
observations is equally likely. This is the idea underlying a class of tests called permutation
tests. To understand why they are called this, we need the definition of a permutation:

Definition 8.10. Given a set of (n + m) objects arranged or numbered in a sequence, a
permutation of the objects is a rearrangement of the objects into the same or a different order.
The number of permutations is (n + m)!.

What we said above is that if the null hypothesis holds in the two-sample problem, all
permutations of the numbers observed are equally likely. Let us illustrate this with a small
example. Suppose that we have two observations from the first group and two observations
from the second group. Suppose that we know that the four observations take on the values 3,
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Table 8.5 Permutations of Four Observations

x y x-y x y x-y
37 8 10 7 8 3 10
37 10 8 7 8 10 3
7 3 8 10 (Y8 7 3 10 1
7 3 10 8 8 7 10 3
38 7 10 7 10 3 8
38 10 7 7 10 8 3
8§ 3 7 10 3l 7 3 8 3
8§ 3 10 7 0 7 8 3
3 10 7 8 8§ 10 3 7
3 10 8 7 8§ 10 7 3
0o 3 7 8 “1l1wo 8 3 7 4
0 3 8 7 o 8 7 3

7, 8, and 10. Listed in Table 8.5 are the possible permutations where the first two observations
would be considered to come from the first group and the second two from the second group.
(Note that x represents the first group and y represents the second.)

If we only know the four values 3, 7, 8, and 10 but do not know in which order they
came, any of the 24 possible arrangements listed above are equally likely. If we wanted to
perform a two-sample test, we could generate a statistic and calculate its value for each of the
24 arrangements. We could then order the values of the statistic according to some alternative
hypothesis so that the more extreme values were more likely under the alternative hypothesis.
By looking at what sequence actually occurred, we can get a p-value for this set of data. The
p-value is determined by the position of the statistic among the possible values. The p-value
is the number of possibilities as extreme or more extreme than that observed divided by the
number of possibilities.

Suppose, for example, that with the data above, we decided to use the difference in means
between the two groups, X —, as our test statistic. Suppose also that our alternative hypothesis
is that group 1 has a larger mean than group 2. Then, if any of the last four rows of Table had
occurred, the one-sided p-value would be 4/24, or 1/6. Note that this would be the most extreme
finding possible. On the other hand, if the data had been 8, 7, 3, and 10, with an X —y = 1, the
p-value would be 12/24, or 1/2.

The tests we have been discussing are called permutation tests. They are possible when
a permutation of all or some subset of the data is considered equally likely under the null
hypothesis; the test is based on this fact. These tests are sometimes also called conditional tests,
because the test takes some portion of the data as fixed or known. In the case above, we assume
that we know the actual observed values, although we do not know in which order they occurred.
We have seen an example of a conditional test before: Fisher’s exact test in Chapter 6 treated the
row and column totals as known; conditionally, upon that information, the test considered what
happened to the entries in the table. The permutation test can be used to calculate appropriate
p-values for tests such as the 7-test when, in fact, normal assumptions do not hold. To do this,
proceed as in the next example.

Example 8.7. Given two samples, a sample of size n of X observations and a sample of size
m of Y observations, it can be shown (Problem 8.24) that the two-sample z-test is a monotone
function of X —; that is, as X —y increases, ¢ also increases. Thus, if we perform a permutation
test on X —y, we are in fact basing our test on extreme values of the 7-statistic. The illustration
above is equivalent to a ¢-test on the four values given. Consider now the data

x1 = 1.3, xp = 2.3, x3=1.9, y1 = 2.8, y2 =3.9
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The 120 permutations (3 4 2)! fall into 10 groups of 12 permutations with the same value of
X —7 (a complete table is included in the Web appendix). The observed value of X —y is —1.52,
the lowest possible value. A one-sided test of E(Y) < E(X) would have p = 0.1 = 12/120.
The two-sided p-value is 0.2.

The Wilcoxon test may be considered a permutation test, where the values used are the ranks
and not the observed values. For the Wilcoxon test we know what the values of the ranks will
be; thus, one set of statistical tables may be generated that may be used for the entire sample. For
the general permutation test, since the computation depends on the numbers actually observed,
it cannot be calculated until we have the sample in hand. Further, the computations for large
sample sizes are very time consuming. If n is equal to 20, there are over 2 x 10'8 possible
permutations. Thus, the computational work for permutation tests becomes large rapidly. This
would appear to limit their use, but as we discuss in the next section, it is possible to sample
permutations rather than evaluating every one.

We now turn to randomization tests. Randomization tests proceed in a similar manner to
permutation tests. In general, one assumes that some aspects of the data are known. If certain
aspects of the data are known (e.g., we might know the numbers that were observed, but not
which group they are in), one can calculate a number of equally likely outcomes for the complete
data. For example, in the permutation test, if we know the actual values, all possible permutations
of the values are equally likely under the null hypothesis. In other words, it is as if a permutation
were to be selected at random; the permutation tests are examples of randomization tests.

Here we consider another example. This idea is the same as that used in the signed rank test.
Suppose that under the null hypothesis, the numbers observed are independent and symmetric
about zero. Suppose also that we are given the absolute values of the numbers observed but
not whether they are positive or negative. Take a particular number a. Is it more likely to be
positive or negative? Because the distribution is symmetric about zero, it is not more likely to
be either one. It is equally likely to be +a or —a. Extending this to all the observations, every
pattern of assigning pluses or minuses to our absolute values is equally likely to occur under
the null hypothesis that all observations are symmetric about zero. We can then calculate the
value of a test statistic for all the different patterns for pluses and minuses. A test basing the
p-value on these values would be called a randomization test.

Example 8.8. One can perform a randomization one-sample ¢-test, taking advantage of the
absolute values observed rather than introducing the ranks. For example, consider the first four
paired observations of Example 8.2. The values are —0.0525, 0.172, 0.577, and 0.200. Assign
all 16 patterns of pluses and minuses to the four absolute values (0.0525, 0.172, 0.577, and
0.200) and calculate the values of the paired or one-sample 7-test. The 16 computed values, in
increasing order, are —3.47, —1.63, —1.49, —0.86, —0.46, —0.34, —0.08, —0.02, 0.02, 0.08,
0.34, 0.46, 0.86, 1.48, 1.63, and 3.47. The observed ¢-value (in bold type) is —0.86. It is the
fourth of 16 values. The two-sided p-value is 2(4/16) = 0.5.

*8.10 MONTE CARLO OR SIMULATION TECHNIQUES

*8.10.1 Evaluation of Statistical Significance

To compute statistical significance, we need to compare the observed values with something else.
In the case of symmetry about the origin, we have seen it is possible to compare the observed
value to the distribution where the plus and minus signs are independent with probability 1/2. In
cases where we do not know a prior appropriate comparison distribution, as in a drug trial, the
distribution without the drug is found by either using the same subjects in a crossover trial or
forming a control group by a separate sample of people who are not treated with the drug. There
are cases where one can conceptually write down the probability structure that would generate
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the distribution under the null hypothesis, but in practice could not calculate the distribution.
One example of this would be the permutation test. As we mentioned previously, if there are 20
different values in the sample, there are more than 2 x 10'8 different permutations. To generate
them all would not be feasible, even with modern electronic computers. However, one could
evaluate the particular value of the test statistic by generating a second sample from the null
distribution with all permutations being equally likely. If there were some way to generate
permutations randomly and compute the value of the statistic, one could take the observed
statistic (thinking of this as a sample of size 1) and compare it to the randomly generated value
under the null hypothesis, the second sample. One would then order the observed and generated
values of the statistic and decide which values are more extreme; this would lead to a rejection
region for the null hypothesis. From this, a p-value could be computed. These abstract ideas
are illustrated by the following examples.

Example 8.9. As mentioned above, for fixed observed values, the two-sample f-test is a
monotone function of the value of X —7, the difference in the means of the two samples. Suppose
that we have the X — y observed. One might then generate random permutations and compute
the values of X — y. Suppose that we generate n such values. For a two-sided test, let us order
the absolute values of the statistic, including both our random sample under the null hypothesis
and the actual observation, giving us n + 1 values. Suppose that the actual observed value of
the statistic from the data is the kth-order statistic, where we have ordered the absolute values
from smallest to largest. Larger values tend to give more evidence against the null hypothesis of
equal means. Suppose that we would reject for all observations as large as the kth-order statistic
or larger. This corresponds to a p-value of (n +2 — k)/(n + 1).

One problem that we have not discussed yet is the method for generating the random per-
mutation and X — ¥ values. This is usually done by computer. The computer generates random
permutations by using what are called random number generators (see Note 8.10). A study
using the generation of random quantities by computer is called a Monte Carlo study, for the
gambling establishment at Monte Carlo with its random gambling devices and games. Note that
by using Monte Carlo permutations, we can avoid the need to generate all possible permutations!
This makes permutation tests feasible for large numbers of observations.

Another type of example comes about when one does not know how to compute the distri-
bution theoretically under the null hypothesis.

Example 8.10. This example will not give all the data but will describe how a Monte Carlo
test was used. In the Coronary Artery Surgery Study (CASS [1981], Alderman et al. [1982]), a
study was made of the reasons people that were treated by coronary bypass surgery or medical
therapy. Among 15 different institutions, it was found that many characteristics affected the
assignments of patients to surgical therapy. A multivariate statistical analysis of a type described
later in this book (linear discriminant analysis) was used to identify factors related to choice
of therapy and to estimate the probability that someone would have surgery. It was clear that
the sites differed in the percentage of people assigned to surgery, but it was also clear that
the clinical sites had patient populations with different characteristics. Thus, one could not
immediately conclude that the clinics had different philosophies of assignment to therapy merely
by running a x? test. Conceivably, the differences between clinics could be accounted for by
the different characteristics of the patient populations. Using the estimated probability that each
patient would or would not have surgery, the total number of surgical cases was distributed
among the clinics using a Monte Carlo technique. The corresponding x?2 test for the observed
and expected values was computed for each of these randomly generated assignments under the
null hypothesis of no clinical difference. This was done 1000 times. The actual observed value
for the statistic turned out to be larger than any of the 1000 simulations. Thus, the estimated
p-value for the significance of the conjecture that the clinics had different methods of assigning
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people to therapy was less than 1/1001. It was thus concluded that the clinics had different
philosophies by which they assigned people to medical or surgical therapy.

We now turn to other possible uses of the Monte Carlo technique.

8.10.2 The Bootstrap

The motivation for distribution-free statistical procedures is that we need to know the distri-
bution of a statistic when the frequency distribution F of the data is not known a priori. A
very ingenious way around this problem is given by the bootstrap, a procedure due in its full
maturity to Efron [1979], although special cases and related ideas had been around for many
years.

The idea behind the bootstrap is that although we do not know F, we have a good estimate of
it in the empirical frequency distribution F,,. If we can estimate the distribution of our statistic
when data are sampled from F),, we should have a good approximation to the distribution of
the statistic when data are sampled from the true, unknown F. We can create data sets sampled
from F, simply by resampling the observed data: We take a sample of size n from our data set
of size n (replacing the sampled observation each time). Some observations appear once, others
twice, others not at all.

The bootstrap appears to be too good to be true (the name emphasizes this, coming from
the concept of “lifting yourself by your bootstraps”), but both empirical and theoretical analysis
confirm that it works in a fairly wide range of cases. The two main limitations are that it works
only for independent observations and that it fails for certain extremely nonrobust statistics
(the only simple examples being the maximum and minimum). In both cases there are more
sophisticated variants of the bootstrap that relax these conditions.

Because it relies on approximating F' by F;, the bootstrap is a large-sample method that is only
asymptotically distribution-free, although it is successful in smaller samples than, for example,
the ¢-test for nonnormal data. Efron and Tibshirani [1986, 1993] are excellent references; much
of the latter is accessible to the nonstatistician. Davison and Hinckley [1997] is a more advanced
book covering many variants on the idea of resampling. The Web appendix to this chapter links
to more demonstrations and examples of the bootstrap.

Example 8.11. 'We illustrate the bootstrap by reexamining the confidence interval for P[X
< Y] generated in Example 8.5. Recall that we were comparing treadmill times for normal
subjects and those with three-vessel disease. The observed P[X < Y] was 15/80 = 0.1875.
In constructing a bootstrap sample we sample 8 observations from the normal and 10 from the
three-vessel disease data and compute U/mn for the sample. Repeating this 1000 times gives
an estimate of the distribution of P[X < Y]. Taking the upper and lower «/2 percentage points
of the distribution gives an approximate 95% confidence interval. In this case the confidence
interval is [0, 0.41]. Figure 8.3 shows a histogram of the bootstrap distribution with the normal
approximation from Example 8.5 overlaid on it.

Comparing this to the interval generated from the normal approximation, we see that both
endpoints of the bootstrap interval are slightly higher, and the bootstrap interval is not quite
symmetric about the observed value, but the two intervals are otherwise very similar. The
bootstrap technique requires more computer power but is more widely applicable: It is less
conservative in large samples and may be less liberal in small samples.

Related resampling ideas appear elsewhere in the book. The idea of splitting a sample to
estimate the effect of a model in an unbiased manner is discussed in Chapters 11 and 13 and
elsewhere. Systematically omitting part of a sample, estimating values, and testing on the omitted
part is used; if one does this, say for all subsets of a certain size, a jackknife procedure is being
used (see Efron [1982]; Efron and Tibshirani [1993]).
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Figure 8.3 Histogram of bootstrap distribution of U/mn and positive part of normal approximation
(dashed line). (Data from CASS [1981]; see Example 8.5.)

8.10.3 Empirical Evaluation of the Behavior of Statistics: Modeling and Evaluation

Monte Carlo generation on a computer is also useful for studying the behavior of statistics.
For example, we know that the x2-statistic for contingency tables, as discussed in Chapter 7,
has approximately a y2-distribution for large samples. But is the distribution approximately x>
for smaller samples? In other words, is the statistic fairly robust with respect to sample size?
What happens when there are small numbers of observations in the cells? One way to evaluate
small-sample behavior is a Monte Carlo study (also called a simulation study). One can generate
multinomial samples with the two traits independent, compute the Xz—statistic, and observe, for
example, how often one would reject at the 5% significance level. The Monte Carlo simulation
would allow evaluation of how large the sample needs to be for the asymptotic x? critical value
to be useful.

Monte Carlo simulation also provides a general method for estimating power and sample size.
When designing a study one usually wishes to calculate the probability of obtaining statistically
significant results under the proposed alternative hypothesis. This can be done by simulating
data from the alternative hypothesis distribution and performing the planned test. Repeating this
many times allows the power to be estimated. For example, if 910 of 1000 simulations give a
statistically significant result, the power is estimated to be 91%. In addition to being useful when
no simple formula exists for the power, the simulation approach is helpful in concentrating the
mind on the important design factors. Having to simulate the possible results of a study makes
it very clear what assumptions go into the power calculation.

Another use of the Monte Carlo method is to model very complex situations. For example,
you might need to design a hospital communications network with many independent inputs. If
you knew roughly the distribution of calls from the possible inputs, you could simulate by Monte
Carlo techniques the activity of a proposed network if it were built. In this manner, you could
see whether or not the network was often overloaded. As another example, you could model
the hospital system of an area under the assumption of new hospitals being added and various
assumptions about the case load. You could also model what might happen in catastrophic
circumstances (provided that realistic assumptions could be made). In general, the modeling
and simulation approach gives one method of evaluating how changes in an environment might
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affect other factors without going through the expensive and potentially catastrophic exercise
of actually building whatever is to be simulated. Of course, such modeling depends heavily
on the skill of the people constructing the model, the realism of the assumptions they make,
and whether or not the probabilistic assumptions used correspond approximately to the real-life
situation.

A starting reference for learning about Monte Carlo ideas is a small booklet by Hoff-
man [1979]. More theoretical texts are Edgington [1987] and Ripley [1987] .

*8.11 ROBUST TECHNIQUES

Robust techniques cover more than the field of nonparametric and distribution-free statistics.
In general, distribution-free statistics give robust techniques, but it is possible to make more
classical methods robust against certain violations of assumptions.

We illustrate with three approaches to making the sample mean robust. Another approach
discussed earlier, which we shall not discuss again here, is to use the sample median as a
measure of location. The three approaches are modifications of the traditional mean statistic X.
Of concern in computing the sample mean is the effect that an outlier will have. An observation
far away from the main data set can have an enormous effect on the sample mean. One would
like to eliminate or lessen the effect of such outlying and possibly spurious observations.

An approach that has been suggested is the a-trimmed mean. With the «-trimmed mean,
we take some of the largest and smallest observations and drop them from each end. We then
compute the usual sample mean on the data remaining.

Definition 8.11. The a-trimmed mean of n observations is computed as follows: Let k be
the smallest integer greater than or equal to an. Let X(;) be the order statistics of the sample.
The «-trimmed mean drops approximately a proportion o of the observations from both ends
of the distribution. That is,

n—k

1
ok 2 X

i=k+1

o-trimmed mean =

We move on to the two other ways of modifying the mean, and then illustrate all three with
a data set. The second method of modifying the mean is called Winsorization. The «-trimmed
mean drops the largest and smallest observations from the samples. In the Winsorized mean,
such observations are included, but the large effect is reduced. The approach is to shrink the
smallest and largest observations to the next remaining observations, and count them as if they
had those values. This will become clearer with the example below.

Definition 8.12. The «-Winsorized mean is computed as follows. Let k be the smallest
integer greater than or equal to an. The a-Winsorized mean is

—k—1
. I !
a-Winsorized mean = — | (k + 1) (X(k41) + X(n—r)) + E X
n
i=k+2

The third method is to weight observations differentially. In general, we would want to
weight the observations at the ends or tails less and those in the middle more. Thus, we will
base the weights on the order statistics where the weights for the first few order statistics and
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the last few order statistics are typically small. In particular, we define the weighted mean to be

Yz WiXa
Z?:l Wi '

weighted mean = where W; >0

Problem 8.26 shows that the a-trimmed mean and the «-Winsorized mean are examples of
weighted means with appropriately chosen weights.

Example 8.12. We compute the mean, median, 0.1-trimmed mean, and 0.1-Winsorized
mean for the female treadmill data of Example 8.6.

304 --- 36
mean = X = +7+9 =708
20
X X
median = M =750

Now 0.1 x 20 =2, so k = 2.

570 + - - - + 900

o-trimmed mean = % =734.6

1
«-Winsorized mean = 5(3(579 +900) + 618 + - - - + 840) = 734.7

Note that the median and both robust mean estimates are considerably higher than the sample
mean X. This is because of the small outlier of 30.

The Winsorized mean was intended to give outlying observations the same influence on the
estimate as the most extreme of the interior estimates. In fact, the trimmed mean does this and
the Winsorized mean gives outlying observations rather more influence. This, combined with
the simplicity of the trimmed mean, makes it more attractive.

Robust techniques apply in a much more general context than shown here, and indeed are
more useful in other situations. In particular, for regression and multiple regression (subjects of
subsequent chapters in this book), a large amount of statistical theory has been developed for
making the procedures more robust [Huber, 1981].

*8.12 FURTHER READING AND DIRECTIONS

There are several books dealing with nonparametric statistics. Among these are Lehmann and
D’Abrera [1998] and Kraft and van Eeden [1968]. Other books deal exclusively with non-
parametric statistical techniques. Three that are accessible on a mathematical level suitable for
readers of this book are Marascuilo and McSweeney [1977], Bradley [1968], and Siegel and
Castellan [1990].

A book that gives more of a feeling for the mathematics involved at a level above this text but
which does not require calculus is Hajek [1969]. Another very comprehensive text that outlines
much of the theory of statistical tests but is on a somewhat more advanced mathematical level,
is Hollander and Wolfe [1999]. Finally, a comprehensive text on robust methods, written at a
very advanced mathematical level, is Huber [2003].

In other sections of this book we give nonparametric and robust techniques in more general
settings. They may be identified by one of the words nonparametric, distribution-free, or robust
in the title of the section.
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NOTES

8.1 Definitions of Nonparametric and Distribution-Free

The definitions given in this chapter are close to those of Huber [2003]. Bradley [1968] states
that “roughly speaking, a nonparametric test is a test which makes no hypothesis about the
value of a parameter in a statistical density function, whereas a distribution-free test is one
which makes no assumptions about the precise form of the sampled population.”

8.2 Relative Efficiency

The statements about relative efficiency in this chapter refer to asymptotic relative effi-
ciency [Bradley, 1968; Hollander and Wolfe, 1999; Marascuilo and McSweeney, 1977]. For
two possible estimates, the asymptotic relative efficiency of A to B is the limit of the ratio of
the variance of B to the variance of A as the sample size increases. For two possible fests,
first select a sequence of alternatives such that as n becomes large, the power (probability of
rejecting the null hypothesis) for test A converges to a fixed number greater than zero and less
than 1. Let this number be C. For each member of the sequence, find sample sizes n4 and np
such that both tests have (almost) power C. The limit of the ratio np to n4 is the asymptotic
relative efficiency. Since the definition is for large sample sizes (asymptotic), for smaller sample
sizes the efficiency may be more or less than the figures we have given. Both Bradley [1968]
and Hollander and Wolfe [1999] have considerable information on the topic.

8.3 Crossover Designs for Drugs

These are subject to a variety of subtle differences. There may be carryover effects from the
drugs. Changes over time—for example, extreme weather changes—may make the second part
of the crossover design different than the first. Some drugs may permanently change the subjects
in some way. Peterson and Fisher [1980] give many references germane to randomized clini-
cal trials.

8.4 Signed Rank Test

The values of the ranks are known; for n observations, they are the integers 1 — n. The only
question is the sign of the observation associated with each rank. Under the null hypothesis,
the sign is equally likely to be plus or minus. Further, knowing the rank of an observation
based on the absolute values does not predict the sign, which is still equally likely to be plus
or minus independently of the other observations. Thus, all 2" patterns of plus and minus signs
are equally likely. For n = 2, the four patterns are:

Ranks 1 2 1 2 1 2 1 2
Signs — - + - - + + +
S 0 1 2 3

So P[§<0]=1/4, P[S<1]=1/2, P[S <2]=3/4,and P[S <3]=1.

8.5 Quantile Test

If the alternative hypothesis of interest is an increase in extreme values of the outcome variable,
a more powerful rank test can be based on the number of values above a given threshold. That
is, the outcome value X; is recoded to 1 if it is above the threshold and O if it is below the
threshold. This recoding reduces the data to a 2 x 2 table, and Fisher’s exact test can be used
to make the comparison (see Section 6.3). Rather than prespecifying a threshold, one could
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specify that the threshold was to be, say, the 90th percentile of the combined sample. Again the
data would be recoded to 1 for an observation in the top 10%, O for other observations, giving
a 2 x 2 table. It is important that either a threshold or a percentile be specified in advance.
Selecting the threshold that gives the largest difference in proportions gives a test related to
the Kolmogorov—Smirnov test, and when proper control of the implicit multiple comparisons is
made, this test is not particularly powerful.

8.6 Transitivity

One disadvantage of the rank tests is that they are not necessarily transitive. Suppose that we
conclude from the Mann—Whitney test that group A has larger values than group B, and group
B has larger values than group C. It would be natural to assume that group A has larger values
than group C, but the Mann—Whitney test could conclude the reverse—that C was larger than
A. This fact is important in the theory of elections, where different ways of running elections
are generally equivalent to different rank tests. It implies that candidate A could beat B, B
could beat C, and C could beat A in fair two-way runoff elections, a problem noted in the
late eighteenth century by Condorcet. Many interesting issues related to nontransitivity were
discussed in Martin Gardner’s famous “Mathematical Games” column in Scientific American of
December 1970, October 1974, and November 1997.

The practical importance of nontransitivity is unclear. It is rare in real data, so may largely
be a philosophical issue. On the other hand, it does provide a reminder that the rank-based tests
are not just a statistical garbage disposal that can be used for any data whose distribution is
unattractive.

8.7 Kolmogorov-Smirnov Statistic Is a Rank Statistic

We illustrate one technique used to show that the Kolmogorov—Smirnov statistic is a rank test.
Looking at Figure 8.2, we could slide both curves along the x-axis without changing the value
of the maximum difference, D. Since the curves are horizontal, we can stretch them along the
axis (as long as the order of the jumps does not change) and not change the value of D. Place
the first jump at 1, the second at 2, and so on. We have placed the jumps then at the ranks!
The height of the jumps depends on the sample size. Thus, we can compute D from the ranks
(and knowing which group have the rank) and the sample sizes. Thus, D is nonparametric and
distribution-free.

8.8 One-Sample Kolmogorov-Smirnov Tests and One-Sided Kolmogorov-Smirnov Tests

It is possible to compare one sample to a hypothesized distribution. Let F' be the empirical
cumulative distribution function of a sample. Let H be a hypothesized distribution function.
The statistic

D = m;lx |F(x) — H(x)|

is the one-sample statistic. If H is continuous, critical values are tabulated for this nonparametric
test in the tables already cited in this chapter. An approximation to the p-value for the one-sample
Kolmogorov—Smirnov test is

P(D > d) <2 2/n

This is conservative regardless of sample size, the value of d, the presence or absence of ties,
and the true underlying distribution F, and is increasingly accurate as the p-value decreases.
This approximation has been known for a long time, but the fact that it is guaranteed to be
conservative is a recent, very difficult mathematical result [Massart, 1990].
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The Kolmogorov—Smirnov two-sample statistic was based on the largest difference between
two empirical cumulative distribution functions; that is,

D= m)?xlF(x) — G(x)|

where F and G are the two empirical cumulative distribution functions. Since the absolute value
is involved, we are not differentiating between F being larger and G being larger. If we had
hypothesized as an alternative that the F' population took on larger values in general, F' would
tend to be less than G, and we could use

DT = m?x(G(x) — F(x))

Such one-sided Kolmogorov—Smirnov statistics are used and tabulated. They also are nonpara-
metric rank tests for use with one-sided alternatives.

8.9 More General Rank Tests

The theory of tests based on ranks is well developed [Hajek, 1969; Hajek and Sidak, 1999;
Huber, 2003]. Consider the two-sample problem with groups of size n and m, respectively. Let
Ri(i =1,2,...,n) be the ranks of the first sample. Statistics of the following form, with a a
function of R;, have been studied extensively.

n

S = %Za(R,-)

i=1

The a(R;) may be chosen to be efficient in particular situations. For example, let a(R;) be such
that a standard normal variable has probability R;/(n+m + 1) of being less than or equal to this
value. Then, when the usual two-sample ¢-test normal assumptions hold, the relative efficiency
is 1. That is, this rank test is as efficient as the 7-test for large samples. This test is called the
normal scores test or van der Waerden test.

8.10 Monte Carlo Technique and Pseudorandom Number Generators

The term Monte Carlo technique was introduced by the mathematician Stanislaw Ulam [1976]
while working on the Manhattan atomic bomb project.

Computers typically do not generate random numbers; rather, the numbers are generated
in a sequence by a specific computer algorithm. Thus, the numbers are called pseudorandom
numbers. Although not random, the sequence of numbers need to appear random. Thus, they are
tested in part by statistical tests. For example, a program to generate random integers from zero
to nine may have a sequence of generated integers tested by the x2 goodness-of-fit test to see
that the “probability” of each outcome is 1/10. A generator of uniform numbers on the interval
(0, 1) can have its empirical distribution compared to the uniform distribution by the one-sample
Kolmogorov—Smirnov test (Note 8.8). The subject of pseudorandom number generators is very
deep both philosophically and mathematically. See Chaitin [1975] and Dennett [1984, Chaps.
5 and 6] for discussions of some of the philosophical issues, the former from a mathematical
viewpoint.

Computer and video games use pseudorandom number generation extensively, as do computer
security systems. A number of computer security failures have resulted from poor-quality pseu-
dorandom number generators being used in encryption algorithms. One can generally assume
that the generators provided in statistical packages are adequate for statistical (not cryptographic)
purposes, but it is still useful to repeat complex simulation experiments with a different gener-
ator if possible. A few computer systems now have “genuine” random number generators that
collect and process randomness from sources such as keyboard and disk timings.



PROBLEMS

PROBLEMS

281

8.1 The following data deal with the treatment of essential hypertension (essential is a
technical term meaning that the cause is unknown; a synonym is idiopathic) and is from
a paper by Vlachakis and Mendlowitz [1976]. Seventeen patients received treatments C,
A, and B, where C is the control period, A is propranolol 4 phenoxybenzamine, and B is
propranolol 4+ phenoxybenzamine + hydrochlorothiazide. Each patient received C first,
then either A or B, and finally, B or A. The data in Table 8.6 consist of the systolic
blood pressure in the recumbent position.

8.2

Table 8.6 Blood Pressure Data for Problem 8.1

Patient C A B Patient C A B

1 185 148 132 10 180 132 136
2 160 128 120 11 176 140 135
3 190 144 118 12 200 165 144
4 192 158 115 13 188 140 115
5 218 152 148 14 200 140 126
6 200 135 134 15 178 135 140
7 210 150 128 16 180 130 130
8 225 165 140 17 150 122 132
9 190 155 138

(a) Take the differences between the systolic blood pressures on treatments A and C.
Use the sign test to test for a treatment A effect (two-sided test; give the p-value).
(b) Take the differences between treatments B and C. Use the sign test to test for a
treatment B effect (one-sided test; give the p-value).
(¢) Take the differences between treatments B and A. Test for a treatment difference
using the sign test (two-sided test; give the p-value).

Several population studies have demonstrated an inverse correlation of sudden infant
death syndrome (SIDS) rate with birthweight. The occurrence of SIDS in one of a
pair of twins provides an opportunity to test the hypothesis that birthweight is a major
determinant of SIDS. The set of data in Table 8.7 was collected by D. R. Peterson of the

Table 8.7 Birthweight Data for Problem 8.2

Dizygous Twins

Monozygous Twins

Dizygous Twins

Monozygous Twins

SIDS Non-SIDS SIDS Non-SIDS SIDS Non-SIDS SIDS Non-SIDS
1474 2098 1701 1956 2381 2608 1956 1588
3657 3119 2580 2438 2892 2693 2296 2183
3005 3515 2750 2807 2920 3232 3232 2778
2041 2126 1956 1843 3005 3005 1446 2268
2325 2211 1871 2041 2268 2325 1559 1304
2296 2750 2296 2183 3260 3686 2835 2892
3430 3402 2268 2495 3260 2778 2495 2353
3515 3232 2070 1673 2155 2552 1559 2466
1956 1701 1786 1843 2835 2693

2098 2410 3175 3572 2466 1899

3204 2892 2495 2778 3232 3714
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8.5
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8.7
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Department of Epidemiology, University of Washington, consists of the birthweights
of each of 22 dizygous twins and each of 19 monozygous twins.

(a) For the dizygous twins test the alternative hypothesis that the SIDS child of each
pair has the lower birthweight by taking differences and using the sign test. Find
the one-sided p-value.

(b) As in part (a), but do the test for the monozygous twins.

(c) As in part (a), but do the test for the combined data set.

The following data are from Dobson et al. [1976]. Thirty-six patients with a confirmed
diagnosis of phenylketonuria (PKU) were identified and placed on dietary therapy
before reaching 121 days of age. The children were tested for 1Q (Stanford—Binet test)
between the ages of 4 and 6; subsequently, their normal siblings of closest age were
also tested with the Stanford-Binet. The 15 pairs shown in Table 8.8 are the first 15
listed in the paper. The null hypothesis is that the PKU children, on average, have the
same IQ as their siblings. Using the sign test, find the two-sided p-value for testing
against the alternative hypothesis that the IQ levels differ.

Table 8.8 PKU/IQ Data for Problem 8.3

1Q of IQ of IQ of 1Q of
Pair PKU Case  Sibling | Pair PKU Case  Sibling
1 89 77 9 110 88
2 98 110 10 90 91
3 116 94 11 76 99
4 67 91 12 71 93
5 128 122 13 100 104
6 81 94 14 108 102
7 96 121 15 74 82
8 116 114

Repeat Problem 8.1 using the signed rank test rather than the sign test. Test at the 0.05
significance level.

Repeat Problem 8.2, parts (a) and (b), using the signed rank test rather than the sign
test. Test at the 0.05 significance level.

Repeat Problem 8.3 using the signed rank test rather than the sign test. Test at the 0.05
significance level.

Bednarek and Roloff [1976] deal with the treatment of apnea (a transient cessation
of breathing) in premature infants using a drug called aminophylline. The variable
of interest, “average number of apneic episodes per hour,” was measured before and
after treatment with the drug. An episode was defined as the absence of spontaneous
breathing for more than 20 seconds, or less if associated with bradycardia or cyanosis.
Table 8.9 details the response of 13 patients to aminophylline treatment at 16 hours
compared with 24 hours before treatment (in apneic episodes per hour).

(a) Use the sign test to examine a treatment effect (give the two-sided p-value).

(b) Use the signed rank test to examine a treatment effect (two-sided test at the 0.05
significance level).
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8.8

8.9

Table 8.9 Before/After Treatment Data for Problem 8.7

Before—After
Patient 24 Hours Before 16 Hours After  (Difference)

1 1.71 0.13 1.58
2 1.25 0.88 0.37
3 2.13 1.38 0.75
4 1.29 0.13 1.16
5 1.58 0.25 1.33
6 4.00 2.63 1.37
7 1.42 1.38 0.04
8 1.08 0.50 0.58
9 1.83 1.25 0.58
10 0.67 0.75 —0.08
11 1.13 0.00 1.13
12 2.71 2.38 0.33
13 1.96 1.13 0.83

The following data from Schechter et al. [1973] deal with sodium chloride preference
as related to hypertension. Two groups, 12 normal and 10 hypertensive subjects, were
isolated for a week and compared with respect to Na™ intake. The average daily Na™
intakes are listed in Table 8.10. Compare the average daily Na™ intake of the hyperten-
sive subjects with that of the normal volunteers by means of the Wilcoxon two-sample
test at the 5% significance level.

Table 8.10 Sodium Data for Problem 8.8

Normal  Hypertensive | Normal Hypertensive
10.2 92.8 45.8 34.7
22 54.8 63.6 62.2
0.0 51.6 1.8 11.0
2.6 61.7 0.0 39.1
0.0 250.8 3.7
43.1 84.5 0.0

During July and August 1976, a large number of Legionnaires attending a convention
died of a mysterious and unknown cause. Epidemiologists have talked of “an outbreak
of Legionnaires’ disease.” Chen et al. [1977] examined the hypothesis of nickel con-
tamination as a toxin. They examined the nickel levels in the lungs of nine cases and
nine controls. The authors point out that contamination at autopsy is a possibility. The
data are as follows (ug per 100 g dry weight):

Legionnaire Cases 65 24 52 86 120 82 399 87 139

Control Cases 12 10 31 6 5 5 29 9 12

Note that there was no attempt to match cases and controls. Use the Wilcoxon test
at the one-sided 5% level to test the null hypothesis that the numbers are samples from
similar populations.
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Table 8.11 Plasma iPGE Data for Problem 8.10

Patient Mean Plasma Mean Serum
Number iPGE (pg/mL) Calcium (ml/dL)

Patients with Hypercalcemia

1 500 133
2 500 11.2
3 301 134
4 272 11.5
5 226 114
6 183 11.6
7 183 11.7
8 177 12.1
9 136 12.5
10 118 12.2
11 60 18.0
Patients without Hypercalcemia
12 254 10.1
13 172 9.4
14 168 9.3
15 150 8.6
16 148 10.5
17 144 10.3
18 130 10.5
19 121 10.2
20 100 9.7
21 88 9.2

Robertson et al. [1976] discuss the level of plasma prostaglandin E (iPGE in pg/mL) in
patients with cancer with and without hypercalcemia. The data are given in Table 8.11.
Note that the variables are “mean plasma iPGE” and “mean serum Ca” levels; presum-
ably more than one assay was carried out for each patient’s level. The number of such
tests for each patient is not indicated, nor is the criterion for the number. Using the
Wilcoxon two-sample test, test for differences between the two groups in:

(a) Mean plasma iPGE.
(b) Mean serum Ca.

Sherwin and Layfield [1976] present data about protein leakage in the lungs of male
mice exposed to 0.5 part per million of nitrogen dioxide (NO;). Serum fluorescence data
were obtained by sacrificing animals at various intervals. Use the two-sided Wilcoxon
test, 0.05 significance level, to look for differences between controls and exposed
mice.

(a) At 10 days:

Controls 143 169 95 111 132 150 141
Exposed 152 83 91 86 150 108 78
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8.12

8.13

8.14

8.15

8.16

8.17

8.18

(b) At 14 days:

Controls 76 ‘ 40 ‘ 119 ‘ 72 ‘ 163 ‘ 78

Exposed 119 | 104 | 125 | 147 | 200 | 173

Using the data of Problem 8.8:

(a) Find the value of the Kolmogorov—Smirnov statistic.
(b) Plot the two empirical distribution functions.

() Do the curves differ at the 5% significance level? For sample sizes 10 and 12,
the 10%, 5%, and 1% critical values for mnD are 60, 66, and 80, respectively.

Using the data of Problem 8.9:

(a) Find the value of the Kolmogorov—Smirnov statistic.

(b) Do you reject the null hypothesis at the 5% level? For m = 9 and n = 9, the
10%, 5%, and 1% critical values of mnD are 54, 54, and 63, respectively.

Using the data of Problem 8.10:

(a) Find the value of the Kolmogorov—Smirnov statistic for both variables.

(b) What can you say about the p-value? For m = 10 and n = 11, the 10%, 5%, and
1% critical values of mnD are 57, 60, and 77, respectively.

Using the data of Problem 8.11:

(a) Find the value of the Kolmogorov—Smirnov statistic.

(b) Do you reject at 10%, 5%, and 1%, respectively? Do this for parts (a) and (b) of
Problem 8.11. For m = 7 and n = 7, the 10%, 5%, and 1% critical values of mnD
are 35, 42, and 42, respectively. The corresponding critical values for m = 6 and
n = 6 are 30, 30, and 36.

Test at the 0.05 significance level for a significant improvement with the cream treatment
of Example 8.2.

(a) Use the sign test.
(b) Use the signed rank test.
(¢) Use the 7-test.

Use the expression of colostrum data of Example 8.2, and test at the 0.10 significance
level the null hypothesis of no treatment effect.

(a) Use the sign test.
(b) Use the signed rank test.
(¢) Use the usual 7-test.

Test the null hypothesis of no treatment difference from Example 8.2 using each of the
tests in parts (a), (b), and (c).

(a) The Wilcoxon two-sample test.

(b) The Kolmogorov—Smirnov two-sample test. For m = n = 19, the 20%, 10%,
5%, 1%, and 0.1% critical values for mnD are 133, 152, 171, 190, and 228,
respectively.
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(c) The two-sample z-test.

Compare the two-sided p-values to the extent possible. Using the data of Exam-
ple 8.2, examine each treatment.

(d) Nipple-rolling vs. masse cream.
(e) Nipple-rolling vs. expression of colostrum.
(f) Masse cream vs. expression of colostrum.

As discussed in Chapter 3, Winkelstein et al. [1975] studied systolic blood pressures
of three groups of Japanese men: native Japanese, first-generation immigrants to the
United States (Issei), and second-generation Japanese in the United States (Nisei). The
data are listed in Table 8.12. Use the asymptotic Wilcoxon two-sample statistic to test:

(a) Native Japanese vs. California Issei.
(b) Native Japanese vs. California Nisei.
(¢) California Issei vs. California Nisei.

Table 8.12 Blood Pressure Data for
Problem 8.19

Blood Pressure Native

(mmHg) Japanese Issei  Nisei
<106 218 4 23
106-114 272 23 132
116-124 337 49 290
126-134 362 33 347
136-144 302 41 346
146-154 261 38 202
156-164 166 23 109
>166 314 52 112

Rascati et al. [2001] report a study of medical costs for children with asthma in which
children prescribed steroids had a higher mean cost than other children, but lower costs
according to a Wilcoxon rank-sum test. How can this happen, and what conclusions
should be drawn?

An outlier is an observation far from the rest of the data. This may represent valid
data or a mistake in experimentation, data collection, or data entry. At any rate, a few
outlying observations may have an extremely large effect. Consider a one-sample ¢-test
of mean zero based on 10 observations with

¥=10 and s*=1
Suppose now that one observation of value x is added to the sample.

(a) Show that the value of the new sample mean, variance, and ¢-statistic are

_ 100 +x
X = ———
11
,  10x2 —200x + 1099
ST =
11 x 10
100 4 x

+/x% —20x 4 109.9
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*(b) Graph t as a function of x.

(c) For which values of x would one reject the null hypothesis of mean zero? What
does the effect of an outlier (large absolute value) do in this case?

(d) Would you reject the null hypothesis without the outlier?

(e) What would the graph look like for the Wilcoxon signed rank test? For the sign
test?

Using the ideas of Note 8.4 about the signed rank test, verify the values shown in
Table 8.13 when n = 4.

Table 8.13 Signed-Rank Test
Data for Problem 8.23

K P[S <] s P[S <s]
0 0.062 6 0.688
1 0.125 7 0.812
2 0.188 8 0.875
3 0.312 9 0.938
4 0.438 10 1.000
5 0.562

Source: Owen [1962]; by permission
of Addison-Wesley Publishing Com-
pany.

The Wilcoxon two-sample test depends on the fact that under the null hypothesis, if
two samples are drawn without ties, all (n _; m) arrangements of the n ranks from

the first sample, and the m ranks from the second sample, are equally likely. That is,
if n =1 and m = 2, the three arrangements

)

)

e
NN
T
I
W N =

are equally likely. Here, the rank from population 1 appears in bold type.

(a) If n =2 and m = 4, graph the distribution function of the Wilcoxon two-sample
statistic when the null hypothesis holds.

(b) Find E(W). Does it agree with equation (5)?
(¢) Find var(W). Does it agree with equation (6)?
(Permutation Two-Sample z-Test) To use the permutation two-sample z-test, the text

(in Section *8.9) used the fact that for n + m fixed values, the 7-test was a monotone
function of X —y. To show this, prove the following equality:

1

o+ m) (X2 + 30 37) = (Zixi + X, 31)” — nm(@ = 5)?
nm(n +m —2)(x —y)*

=

Note that the first two terms in the numerator of the square root are constant for all
permutations, so ¢ is a function of X —y.
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*8.25 (One-Sample Randomization ¢-Test) For the randomization one-sample z-test, the paired
x; and y; values give X —y values. Assume that the |x; — y;| are known but the signs are
random, independently + or — with probability 1/2. The 2"(i = 1,2, ..., n) patterns
of pluses and minuses are equally likely.

(a) Show that the one-sample ¢-statistic is a monotone function of x — y when the
|x; — yi| are known. Do this by showing that

xX—y
G2 + 5@ = y?] /ntn = 1)

=

(b) For the data

1 Xi Yz
1 1 2
2 1
3 1 5

compute the eight possible randomization values of r. What is the two-sided
randomization p-value for the ¢ observed?

*8.26 (Robust Estimation of the Mean) Show that the «-trimmed mean and the «-Winsorized
mean are weighted means by explicitly showing the weights W; that are given the two
means.

#8.27 (Robust Estimation of the Mean)

(a) For the combined data for SIDS in Problem 8.2, compute (i) the 0.05 trimmed
mean; (ii) the 0.05 Winsorized mean; (iii) the weighted mean with weights
W; =i(n+ 1 —1i), where n is the number of observations.

(b) The same as in Problem 8.27(a), but do this for the non-SIDS twins.
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CHAPTERO

Association and Prediction: Linear
Models with One Predictor Variable

9.1 INTRODUCTION

Motivation for the methods of this chapter is aided by the use of examples. For this reason,
we first consider three data sets. These data are used to motivate the methods to follow. The
data are also used to illustrate the methods used in Chapter 11. After the three examples are
presented, we return to this introduction.

Example 9.1. Table 9.1 and Figure 9.1 contain data on mortality due to malignant mela-
noma of the skin of white males during the period 1950—-1969 for each state in the United States
as well as the District of Columbia. No mortality data are available for Alaska and Hawaii for
this period. It is well known that the incidence of melanoma can be related to the amount of
sunshine and, somewhat equivalently, the latitude of the area. The table contains the latitude
as well as the longitude for each state. These numbers were obtained simply by estimating the
center of the state and reading off the latitude as given in a standard atlas. Finally, the 1965
population and contiguity to an ocean are noted, where “1” indicates contiguity: the state borders
one of the oceans.

In the next section we shall be particularly interested in the relationship between the mela-
noma mortality and the latitude of the states. These data are presented in Figure 9.1.

Definition 9.1. When two variables are collected for each data point, a plot is very use-
ful. Such plots of the two values for each of the data points are called scatter diagrams or
scattergrams.

Note several things about the scattergram of malignant melanoma rates vs. latitude. There
appears to be a rough relationship. As the latitude increases, the melanoma rate decreases.
Nevertheless, there is no one-to-one relationship between the values. There is considerable
scatter in the picture. One problem is to decide whether or not the scatter could be due to
chance or whether there is some relationship. It might be of interest to estimate the melanoma
rate for various latitudes. In this case, how would we estimate the relationship? To convey the
relationship to others, it would also be useful to have some simple way of summarizing the
relationship. There are two aspects of the relationship that might be summarized. One is how
the melanoma rate changes with latitude; it would also be useful to summarize the variability
of the scattergram.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright © 2004 John Wiley & Sons, Inc.
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Table 9.1 Mortality Rate [per 10 Million (107)] of White Males Due to Malignant Melanoma of
the SKkin for the Period 1950-1959 by State and Some Related Variables

Mortality Latitude Longitude Population Ocean
State per 10,000,000 (deg) (deg) (millions, 1965) State?
Alabama 219 33.0 87.0 3.46 1
Arizona 160 34.5 112.0 1.61 0
Arkansas 170 35.0 92.5 1.96 0
California 182 37.5 119.5 18.60 1
Colorado 149 39.0 105.5 1.97 0
Connecticut 159 41.8 72.8 2.83 1
Delaware 200 39.0 75.5 0.50 1
Washington, DC 177 39.0 77.0 0.76 0
Florida 197 28.0 82.0 5.80 1
Georgia 214 33.0 83.5 4.36 1
Idaho 116 44.5 114.0 0.69 0
Illinois 124 40.0 89.5 10.64 0
Indiana 128 40.2 86.2 4.88 0
Towa 128 422 93.8 2.76 0
Kansas 166 38.5 98.5 2.23 0
Kentucky 147 37.8 85.0 3.18 0
Louisiana 190 31.2 91.8 3.53 1
Maine 117 45.2 69.0 0.99 1
Maryland 162 39.0 76.5 3.52 1
Massachusetts 143 422 71.8 5.35 1
Michigan 117 43.5 84.5 8.22 0
Minnesota 116 46.0 94.5 3.55 0
Mississippi 207 32.8 90.0 2.32 1
Missouri 131 38.5 92.0 4.50 0
Montana 109 47.0 110.5 0.71 0
Nebraska 122 41.5 99.5 1.48 0
Nevada 191 39.0 117.0 0.44 0
New Hampshire 129 43.8 71.5 0.67 1
New Jersey 159 40.2 74.5 6.77 1
New Mexico 141 35.0 106.0 1.03 0
New York 152 43.0 75.5 18.07 1
North Carolina 199 35.5 79.5 4.91 1
North Dakota 115 47.5 100.5 0.65 0
Ohio 131 40.2 82.8 10.24 0
Oklahoma 182 35.5 97.2 2.48 0
Oregon 136 44.0 120.5 1.90 1
Pennsylvania 132 40.8 77.8 11.52 0
Rhode Island 137 41.8 71.5 0.92 1
South Carolina 178 33.8 81.0 2.54 1
South Dakota 86 44.8 100.0 0.70 0
Tennessee 186 36.0 86.2 3.84 0
Texas 229 31.5 98.0 10.55 1
Utah 142 39.5 111.5 0.99 0
Vermont 153 44.0 72.5 0.40 1
Virginia 166 37.5 78.5 4.46 1
Washington 117 47.5 121.0 2.99 1
West Virginia 136 38.8 80.8 1.81 0
Wisconsin 110 44.5 90.2 4.14 0
Wyoming 134 43.0 107.5 0.34 0

Source: U.S. Department of Health, Education, and Welfare [1974].
4] = state borders on ocean.
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Figure 9.1 Annual mortality (per 10,000,000 population) due to malignant melanoma of the skin for white
males by state and latitude of the center of the state for the period 1950-1959.

Example 9.2. To assess physical conditioning in normal subjects, it is useful to know how
much energy they are capable of expending. Since the process of expending energy requires
oxygen, one way to evaluate this is to look at the rate at which they use oxygen at peak physical
activity. To examine the peak physical activity, tests have been designed where a person runs on
a treadmill. At specified time intervals, the speed at which the treadmill moves and the grade of
the treadmill both increase. The person is then run systematically to maximum physical capacity.
The maximum capacity is determined by the person, who stops when unable to go further. Data
from Bruce et al. [1973] are discussed.

The oxygen consumption was measured in the following way. The patient’s nose was blocked
off by a clip. Expired air was collected from a silicone rubber mouthpiece fitted with a very low
resistance valve. The valve was connected by plastic tubes into a series of evacuated neoprene
balloons. The inlet valve for each balloon was opened for 60 seconds to sample the expired air.
Measurements were made of the volumes of expired air, and the oxygen content was obtained
using a paramagnetic analyzer capable of measuring the oxygen. From this, the rate at which
oxygen was used in mm/min was calculated. Physical conditioning, however, is relative to the
size of the person involved. Smaller people need less oxygen to perform at the same speed. On
the other hand, smaller people have smaller hearts, so relatively, the same level of effort may be
exerted. For this reason, the maximum oxygen content is normalized by body weight; a quantity,
VO; maX, is computed by looking at the volume of oxygen used per minute per kilogram of
body weight. Of course, the effort expended to go further on the treadmill increases with the
duration of time on the treadmill, so there should be some relationship between VO; pmax and
duration on the treadmill. This relationship is presented below.

Other pertinent variables that are used in the problems and in additional chapters are recorded
in Table 9.2, including the maximum heart rate during exercise, the subject’s age, height, and
weight. The 44 subjects listed in Table 9.2 were all healthy. They were classified as active if
they usually participated at least three times per week in activities vigorous enough to raise a
sweat.
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Table 9.2 Exercise Data for Healthy Active Males

Case Duration (s) VOz max Heart Rate (beats/min) Age Height (cm) Weight (kg)

1 706 41.5 192 46 165 57

2 732 45.9 190 25 193 95

3 930 545 190 25 187 82
4 900 60.3 174 31 191 84

5 903 60.5 194 30 171 67

6 976 64.6 168 36 177 78

7 819 474 185 29 174 70

8 922 57.0 200 27 185 76

9 600 40.2 164 56 180 78
10 540 35.2 175 47 180 80
11 560 33.8 175 46 180 81
12 637 38.8 162 55 180 79
13 593 38.9 190 50 161 66
14 719 49.5 175 52 174 76
15 615 37.1 164 46 173 84
16 589 322 156 60 169 69
17 478 31.3 174 49 178 78
18 620 33.8 166 54 181 101
19 710 43.7 184 57 179 74
20 600 41.7 160 50 170 66
21 660 41.0 186 41 175 75
22 644 45.9 175 58 173 79
23 582 35.8 175 55 160 79
24 503 29.1 175 46 164 65
25 747 472 174 47 180 81
26 600 30.0 174 56 183 100
27 491 34.1 168 82 183 82
28 694 38.1 164 48 181 71
29 586 28.7 146 68 166 65
30 612 37.1 156 54 177 80
31 610 345 180 56 179 82
32 539 34.4 164 50 182 87
33 559 35.1 166 48 174 72
34 653 40.9 184 56 176 75
35 733 454 186 45 179 75
36 596 36.9 174 45 179 79
37 580 41.6 188 43 179 73
38 550 22.7 180 54 180 75
39 497 31.9 168 55 172 71
40 605 42.5 174 41 187 84
41 552 374 166 44 185 81
42 640 48.2 174 41 186 83
43 500 33.6 180 50 175 78
44 603 45.0 182 42 176 85

Source: Data from Bruce et al. [1973].

The duration of the treadmill exercise and VO, max data are presented in Figure 9.2. In this
scattergram, we see that as the treadmill time increases, by and large, the VO, max increases.
There is, however, some variability. The increase is not an infallible rule. There are subjects
who run longer but have less oxygen consumption than someone else who has exercised for a
shorter time period. Because of the expense and difficulty in collecting the expired air volumes,
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Figure 9.2 Oxygen consumption vs. treadmill duration.

it is useful to evaluate oxygen consumption and conditioning by having the subjects run on the
treadmill and recording the duration. As we can see from Figure 9.2, this would not be a perfect
solution to the problem. Duration would not totally determine the VO, pax level. Nevertheless,
it would give us considerable information. When we do this, how should we predict what the
VO; max level would be from the duration? Clearly, such a predictive equation should be
developed from the data at hand. When we do this, we want to characterize the accuracy of
such predictions and succinctly summarize the relationship between the two variables.

Example 9.3. Dern and Wiorkowski [1969] collected data dealing with the erythrocyte
adenosine triphosphate (ATP) levels in youngest and older sons in 17 families. The purpose of
the study was to determine the effect of storage of the red blood cells on the ATP level. The
level is important because it determines the ability of the blood to carry energy to the cells of
the body. The study found considerable variation in the ATP levels, even before storage. Some
of the variation could be explained on the basis of variation by family (genetic variation). The
data for the oldest and youngest sons are extracted from the more complete data set in the paper.
Table 9.3 presents the data for 17 pairs of brothers along with the ages of the brothers.

Figure 9.3 is a scattergram of the values in Table 9.3. Again, there appears to be some
relationship between the two values, with both brothers tending to have high or low values at
the same time. Again, we would like to consider whether or not such variability might occur by

chance. If chance is not the explanation, how could we summarize the pattern of variation for
the pairs of numbers?

The three scattergrams have certain features in common:

1. Each scattergram refers to a situation where two quantities are associated with each
experimental unit. In the first example, the melanoma rate for the state and the latitude
of the state are plotted. The state is the individual unit. In the second example, for each
person studied on the treadmill, VO max vs. the treadmill time in seconds was plotted.
In the third example, the experimental unit was the family, and the ATP values of the
youngest and oldest sons were plotted.
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Table 9.3 Erythrocyte Adenosine Triphosphate
(ATP) Levels? in Youngest and Oldest Sons in 17
Families Together with Age (Before Storage)

Youngest Oldest
Family Age  ATP Level Age  ATP Level
1 24 4.18 41 4.81
2 25 5.16 26 4.98
3 19 4.85 27 4.48
4 28 3.43 32 4.19
5 22 4.53 25 4.27
6 7 5.13 23 4.87
7 21 4.10 24 4.74
8 17 4.77 25 4.53
9 25 4.12 26 3.72
10 24 4.65 25 4.62
11 12 6.03 25 5.83
12 16 5.94 24 4.40
13 9 5.99 22 4.87
14 18 5.43 24 5.44
15 14 5.00 26 4.70
16 24 4.82 26 4.14
17 20 5.25 24 5.30

Source: Data from Dern and Wiorkowski [1969].
@ ATP levels expressed as micromoles per gram of hemoglobin.

ATP Levels of Oldest Son
[$4]
T

[ T T T 1
3 4 5 6 7
ATP Levels of Youngest Son

Figure 9.3 ATP levels (umol/g of hemoglobin) of youngest and oldest sons in 17 families. (Data from
Dern and Wiorkowski [1969].)
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2. In each of the three diagrams, there appears to be a rough trend or association between the
variables. In the melanoma rate date, as the latitude increases, the melanoma rate tends to
decrease. In the treadmill data, as the duration on the treadmill increased, the VO, max
also increased. In the ATP data, both brothers tended to have either a high or a low value
for ATP.

3. Although increasing and decreasing trends were evident, there was not a one-to-one rela-
tionship between the two quantities. It was not true that every state with a higher latitude
had a lower melanoma rate in comparison with a state at a lower latitude. It was not
true that in each case when individual A ran on the treadmill a longer time than individ-
ual B that individual A had a higher VO; pmax value. There were some pairs of brothers
for which one pair did not have the two highest values when compared to the other
pair. This is in contrast to certain physical relationships. For example, if one plotted the
volume of a cube as a function of the length of a side, there is the one-to-one rela-
tionship: the volume increases as the length of the side increases. In the data we are
considering, there is a rough relationship, but there is still considerable variability or
scatter.

4. To effectively use and summarize such scattergrams, there is a need for a method to
quantitate how much of a change the trends represent. For example, if we consider two
states where one has a latitude 5° south of the other, how much difference is expected
in the melanoma rates? Suppose that we train a person to increase the duration of tread-
mill exercise by 70 seconds; how much of a change in VO, max capacity is likely to
occur?

5. Suppose that we have some method of quantitating the overall relationship between the
two variables in the scattergram. Since the relationship is not precisely one to one, there
is a need to summarize how much of the variability the relationship explains. Another
way of putting this is that we need a summary quantity which tells us how closely the
two variables are related in the scattergram.

6. If we have methods of quantifying these things, we need to know whether or not any
estimated relationships might occur by chance. If not, we still want to be able to quantify
the uncertainty in our estimated relationships.

The remainder of this chapter deals with the issues we have just raised. In the next section
we use a linear equation (a straight line) to summarize the relationship between two variables
in a scattergram.

9.2 SIMPLE LINEAR REGRESSION MODEL

9.2.1 Summarizing the Data by a Linear Relationship

The three scattergrams above have a feature in common: the overall relationship is roughly
linear; that is, a straight line that characterizes the relationships between the two variables could
be placed through the data. In this and subsequent chapters, we look at linear relationships.
A linear relationship is one expressed by a linear equation. For variables U, V, W, ..., and
constants a, b, c, ..., a linear equation for Y is given by

Y=a+bU+cV+dW+---

In the scattergrams for the melanoma data and the exercise data, let X denote the variable
on the horizontal axis (abscissa) and Y be the notation for the variable on the vertical axis
(ordinate). Let us summarize the data by fitting the straight-line equation ¥ = a + bX to the
data. In each case, let us think of the X variable as predicting a value for Y. In the first two
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examples, that would mean that given the latitude of the state, we would predict a value for the
melanoma rate; given the duration of the exercise test, we would predict the VO, pmax value
for each subject.

There is terminology associated with this procedure. The variable being predicted is called
the dependent variable or response variable; the variable we are using to predict is called the
independent variable, the predictor variable, or the covariate. For a particular value, say, X; of
the predictor variable, our value predicted for Y is given by

Y =a+bX; (1)
The fit of the values predicted to the values observedA(Xi, Y;) may be summarized by the
difference between the value Y; observed and the value Y; predicted. This difference is called a
residual value:
residual value = y; — ; = value observed — value predicted 2)
It is reasonable to fit the line by trying to make the residual values as small as possible. The
principle of least squares chooses a and b to minimize the sum of squares of the residual values.
This is given in the following definition:

Definition 9.2. Given data (x;, y;),i = 1,2, ..., n, the least squares fit to the data chooses

a and b to minimize .
S 0n - 52
i=1

where 3; = a + bx;.

The values a and b that minimize the sum of squares are described below. At this point, we
introduce some notation similar to that of Section 7.3:

=Y (-’
i
1= (i — )7
i
[yl =) (5 =) (3 = F)
i
We decided to choose values a and b so that the quantity
D i == (i—a—bx)?
i i
is minimized. It can be shown that the values for a and b that minimize the quantity are given by

2 =)=y [yl

O e v

and
a=y—bx

Note 9.4 gives another equivalent formula for b that emphasizes its role as a summary statistic
of the slope of the X-Y relationship.
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Table 9.4 Predicted Mortality Rates by Latitude for the
Data of Table 9.1¢

Latitude (x)  Predicted Mortality (y) K K 53

30 209.9 19.12 632 20.13
35 180.0 19.12  3.85 19.50
39.5 (mean) 152.9 (mean) 19.12 273 19.31
40 150.1 19.12 274 1931
45 120.2 19.12 426 19.58
50 90.3 19.12  6.83 2030

“For the quantities s, and s3, see Section 9.2.3.

For the melanoma data, we have the following quantities:

X =39.533, y = 152.878

Y @i =D (i — ) = [xy] = —6100.171
Y @i =% = [x%] = 1020.499
Y (i =) = [y*] = 53,637.265

The least squares slope b is

—6100.171
b= ————=-59776
1020.499

and the least squares intercept a is
a = 152.878 — (—=5.9776 x 39.533) = 389.190

Figure 9.4 presents the melanoma data with the line of least squares fit drawn in. Because of
the method of selecting the line, the line goes through the data, of course. The least squares
line always has the property that it goes through the point in the scattergram corresponding
to the sample mean of the two variables. The sample means of the variables are located by
the intersection of dotted lines. Further, the point for Tennessee is detailed in the box in the
lower left-hand corner. The value predicted from the equation was 174, whereas the actual
melanoma rate for this state was 186. Thus, the residual value is the difference, 12. We see
that the value predicted, 174, is closer to the value observed than to the overall ¥ mean, which
is 152.9.

For the melanoma data, the line of least squares fit is ¥ = 389.19 — 5.9776X. For each
state’s observed mortality rate, there is then a predicted mortality rate based on knowledge of
the latitude. Some predicted values are listed in Table 9.4. The farther north the state, the lower
the mortality due to malignant melanoma; but now we have quantified the change.

Note that the predicted mortality at the mean latitude (39.5°) is exactly the mean value of
the mortalities observed; as noted above, the regression line goes through the point (x, y).

9.2.2 Linear Regression Models

With the line of least squares fit, we shall associate a mathematical model. This linear regression
model takes the predictor or covariate observation as being fixed. Even if it is sampled at random,
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Figure 9.4 Annual mortality (per 10,000,000 population) due to malignant melanoma of the skin for white
males by state and latitude of the center of the state for the period 1950-1959 (least squares regression line
is given).

the analysis is conditional upon knowing the value of X. In the first example above, the latitude
of each state is fixed. In the second example, the healthy people may be considered to be a
representative—although not random—sample of a larger population; in this case, the duration
may be considered a random quantity. In the linear regression analysis of this chapter, we know
X and are interested in predicting the value of Y. The regression model assumes that for a
fixed value of X, the expected value of Y is some function. In addition to this expected value,
a random error term is added. It is assumed that the error has a mean value of zero. We shall
restrict ourselves to situations where the expected value of Y for known X is a linear function.
Thus, our linear regression model is the following:

expected value of ¥ knowing X = E(Y|X) =« + X
Y=a+ X +e, where e (error) has E(e) =0

The parameters o and B are population parameters. Given a sample of observations, the
estimates a and b that we found above are estimates of the population parameters. In the
mortality rates of the states, the random variability arises both because of the randomness
of the rates in a given year and random factors associated with the state, other than lati-
tude. These factors make the observations during a particular time period reasonably mod-
eled as a random quantity. For the exercise test data, we may consider the normal subjects
tested as a random sample from a population of active normal males who might have been
tested.

Definition 9.3. The line E(Y|X) = o + X is called the population regression line. Here,
E(Y|X) is the expected value of ¥ at X (assumed known). The coefficients « and 8 are called
population regression coefficients. The line Y = a + bX is called the estimated regression line,
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and a and b are called estimated regression coefficients. The term estimated is often dropped,
and regression line and regression coefficients are used for these estimated quantities.

For each X, E(Y|X) is the mean of a population of observations. On the left of Figure is
shown a linear regression situation; on the right, the regression E(Y|X) is not linear.

To simplify statistical inference, another assumption is often added: that the error term is
normally distributed with mean zero and variance 012. As we saw with the 7-test, the assumption
of normality is important for testing and confidence interval estimation only in fairly small sam-
ples. In larger samples the central limit theorem replaces the need for distributional assumptions.
Note that the variance of the error term is not the variance of the Y variable. It is the variance
of the Y variable when the value of the X variable is known.

Given data, the variance 012 is estimated by the quantity 52

Vx>
SAY]

2 ;i - Yi)

Se= Xy

Recall that the usual sample variance was divided by n — 1. The n — 2 occurs because two
parameters, o and B, are estimated in fitting the data rather than one parameter, the sample
mean, that was estimated before.

where this quantity is defined as

9.2.3 Inference

We have the model
Y=a+BX+e, where e ~ N(0, o7)

On the basis of n pairs of observations we presented estimates a and b of o and B, respectively.
To test hypotheses regarding o and 8, we need to assume the normality of the term e.

The left panel of Figure 9.5 shows a situation where these assumptions are satisfied. Note
that:

1. E(Y|X) is linear.
2. For each X, the normal Y-distribution has the same variance.
3. For each X, the Y-distribution is normal (less important as the sample size is large).

The right panel of Figure 9.5 shows a situation where all these assumptions don’t hold.

1. E(Y|X) is not a straight line; it curves.
2. The variance of Y increases as X increases.
3. The distribution becomes more highly skewed as X increases.

It can be shown, under the correct normal model or in large samples, that

o2 1 x2
b~N<ﬂ,ﬁ> and a~N<a,012|:;+mi|>

Recall that 012 is estimated by s_%_x =y - 2)2/(n — 2). Note that the divisor is n — 2: the
number of degrees of freedom. The reason, as just mentioned, is that now two parameters are
estimated: « and 8. Given these facts, we can now either construct confidence intervals or tests
of hypotheses after constructing appropriate pivotal variables:

b—p b-8
~Iln-2
o1/v [x?] Sy.x/\/ [x2]

and similar terms involving the intercept a are discussed below.

~ N, 1),
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Figure 9.5 Linear regression assumptions and violations. On the left, the expected values of Y for given
X values fall on a straight line. The variation about the line has the same variance at each X. On the right,
the expected values fall on a curve, not a straight line. The distribution of Y is different for different X
values, with variance and skewness increasing with X.

Returning to Example 9.1, the melanoma data by state, the following quantities are known
or can be calculated:

_ WY 17173
a=389.190, =) o = o = 365.3844

l
b= -5.9776, [x%] = 1020.499, syx = 19.1150

On the assumption that there is no relationship between latitude and mortality, that is, 8 = 0,
the variable b has mean zero. A ¢-test yields

L. SSOTI6 L =S9T6 L o
T 19.1150/4/1020499 059837

From Table A.4, the critical value for a f-variable with 47 degrees of freedom, at the 0.0001
level (two-tailed) is approximately 4.25; hence, the hypothesis is rejected and we conclude
that there is a relationship between latitude and mortality; the mortality increases about 6.0
persons per 10,000,000 for every degree farther south. This, of course, comes from the value of
b = —5.9776 = —6.0. Similarly, a 95% confidence interval for 8 can be constructed using the
t-value of 2.01, and the standard error of the slope, 0.59837 = sy.,/+/ [x2].

A 95% confidence interval is —5.9776 £ (2.01 x 0.59837), producing lower and upper limits
of —7.18 and —4.77, respectively. Again, the confidence interval does not include zero, and the
same conclusion is reached as in the case of the hypothesis test.

The inference has been concerned with the slope § and intercept o up to now. We now want
to consider two additional situations:

1. Inference about population means, o + X, for a fixed value of X
2. Inference about a future observation at a fixed value of X

To distinguish between the two cases, let i, and y, be the predicted mean and a new random
single observation at the point x, respectively. It is important to note that for inference about a
future observation the normality assumption is critical even in large samples. This is in contrast
to inference about the predicted mean or about a and b, where normal distributions are required
only in small samples and the central limit theorem substitutes in large samples.
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First, then, inference about the population mean at a fixed X value: It is natural to estimate
o + BX by a + bx; the predicted value of Y at the value of X = x. Rewrite this quantity as

ix =Y +b(x =)
It can be shown that y and b are statistically independent so that the variance of the quantity is

var[y + b(x —X)] = var(y) + (x — f)z var(b)

2 2
. O‘l __2 CTl
= +(x —X) —[xz]
1 (x—x)2
_ 2 _ 2
= 0] [; + [_xz] =0y, say

Tests and confidence intervals for E(Y|X) at a fixed value of x may be based on the ¢-
distribution.

The quantity 022 reduces to the variance for the intercept, a, at X = 0. It is useful to study
this quantity carefully; there are important implications for design (see Note 9.3). The variance,
022, is not constant but depends on the value of x. The more x differs from X, the greater the
contribution of (x — ¥)2/[x2] to the variance of a + bx. The contribution is zero at x = X. At
x =X,y =7 the slope is not used. Regardless of the slope the line goes through mean point
(X,Y). Consider Example 9.1 again. We need the following information:

syx = 19.1150
n =49
X = 39.533

[x%] = 1020.499

Let )
1 X —X
S% = sf_x |:_ + !]

n [x2]

That is, s% estimates 022. Values of s as related to latitude are given in Table 9.4. Confidence
interval bands for the mean, o + X (at the 95% level), are given in Figure 9.6 by the narrower
bands. The curvature is slight due to the large value of [x2] and the relatively narrow range of
prediction.

We now turn to the second problem: predicting a future observation on the basis of the
observed data. The variance is given by

2_ 2 1, 6-%°
%_”*P+n+ ]

This is reasonable in view of the following argument: At the point o + SX an observation
has variance 022 (estimated by s)z,,x). In addition, there is uncertainty in the true value o + S X.
This adds variability to the estimate. A future observation is assumed to be independent of past
observations. Hence the variance can be added and the quantity s32 results when 012 is estimated
by s)z;‘x. Confidence interval bands for future observations (95% level) are represented by outer
lines in Figure 9.6. This band means that we are 95% certain that the next observation at the
fixed point x will be within the given bands. Note that the curvature is not nearly as marked.
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Figure 9.6 Data of Figure 9.1: 95% confidence bands for population means (solid) and 95% confidence
bands for a future observation (dashed).

9.2.4 Analysis of Variance

Consider Example 9.1 and the data for Tennessee, as graphed in Figure 9.4. The basic data for
this state are (omitting subscripts)

y = 186.0 = observed mortality
x = 36.0 = latitude of center of state
3 = 174.0 = predicted mortality using latitude of 36.0

y = 152.9 = average mortality for United States
Partition the data as follows:
O=-MN=0-N+0-M
total variation = attributable to regression + residual from regression

186.0 — 152.9 = (174.0 — 152.9) + (186.0 — 174.0)
33.1 =21.1 +12.0

Note that the quantity

y-V=a+bx -7
=y—-bx+bx—-Yy
=b(x —X)
The quantity is zero if b = 0, that is, if there is no regression relationship between Y and X. In
addition, it is zero if prediction is made at the point x = X.

These quantities can be calculated for each state, as indicated in abbreviated form in Table 9.5.
The sums of squares of these quantities are given at the bottom of the table. The remarkable

fact is that
D= =) G-+ i =)’
53,637.3 = 36,464.2 +17,173.1
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Table 9.5 Deviations from Mean and Regression Based on Data of Table 9.1

Variation

Observed

Mortality  Latitude  Predicted Total = Regression +  Residual
Case State y) (x) Mortality? y—3 = Y-y + y—3

1  Alabama 219.0 33.0 191.9 66.1 = 390 + 27.1
2 Arizona 160.0 34.5 183.0 7.1 = 30.1 + —-23.0
41  Tennessee 186.0 36.0 174.0 331 = 21,1+ 12.0
48  Wisconsin 110.0 44.5 123.2 —429 = -297 + —13.2
49  Wyoming 134.0 43.0 132.2 —189 = —-20.7 + 1.8
Total 0 = 0 + 0
Mean 152.9 39.5 152.9 0 = 0 + 0
Sum of squares 53,6373 = 36,4642 + 17,173.1

“Predicted mortality based on regression line y = 389.19 — 5.9776x, where x is the latitude at the center of the state.

that is, the total variation as measured by Y (y; — %)2 has been partitioned additively into a
part attributable to regression and the residual from regression. The quantity Y (3; — ) =
Y b%(x; — X)> = b*[x?]. (But since b = [xy]/[x?], this becomes Y (3; — 7)? = [xy]*/[x>].)
Associated with each sum of squares is a degree of freedom (d.f.) which can also be partitioned
as follows:

total variation = attributable to regression + residual variation

df.=n—-1=14+n-2
49 = 1+48

The total variation has n — 1 d.f., not n, since we adjusted Y about the mean Y. These quantities
are commonly entered into an analysis of variance table as follows:

Source of Variation d.f. SS MS F-Ratio
Regression 1 36,4642 36,464.2 99.80
Residual 47 17,173.1 365.384

Total 48 53,637.3

The quantity 365.384 is precisely sf, .- The F-ratio is discussed below. The mean square is
the sum of squares divided by the degrees of freedom. The analysis of variance table of any set
of n pairs of observations (x;, y;),i =1,...,n,is

Source of Variation d.f. SS MS F-Ratio
2 /142
Regression 1 Loyl Do/ w
s
yx
Residual n -2 By subtraction s}z_x

Total n-1 [y?]
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Several points should be noted about this table and the regression procedure:

1. Only five quantities need to be calculated from the raw data to completely determine the
regression line and sums of squares: Y x;, > yi, > x7, > y?, and Y x;y;. From these
quantities one can calculate

[x*] = Z()Ci - Z ;- sz

Z vi)
D1=) i =0 =)y — ==
- _ Xi
eyl =Y (i =i —F) = szyz L2 Z -
2. The greater the slope, the greater the SS due to regression. That is,

: —n [P
SS(regression) = b> Z(xi —-%)? = T

If the slope is “negligible,” SS(regression) will tend to be “small.”

3. The proportion of the total variation attributable to regression is usually denoted by r?;

that is, o ) )
,  Vvariation attributable to regression
,

total variation
[xy]*/[x%]
[y?]
_ P
[x2][y?]

It is clear that 0 < r> < 1 (why?). If b = 0, then [xy]?/[x?] = O and the variation
attributable to regression is zero. If [xy]2 / [x2] is equal to [y2], all of the variation can be
attributed to regression; to be more precise, to linear regression; that is, all the observations
fall on the line a + bx. Thus, r2 measures the degree of linear relationship between X
and Y. The correlation coefficient, r, is studied in Section 9.3. For the data in Table 9.4,

) 36,4642

= ——— =0.67983
53,637.3

That is, approximately 68% of the variation in mortality can be attributed to variation in
latitude. Equivalently, the variation in mortality can be reduced 68% knowing the latitude.

4. Now consider the ratio

o b/l

===
2,

Under the assumption of the model [i.e., y ~ N(« + BX, 012)], the ratio F tends to be
near 1 if 8 = 0 and tends to be larger than 1 if 8 # O (either positively or negatively).
F has the F-distribution, as introduced in Chapter 5. In the example Fj 47 = 99.80, the
critical value at the 0.05 level is Fj 47 = 4.03 (by interpolation). The critical value at
the 0.001 level is Fj 47 = 12.4 (by interpolation). Hence, we reject the hypotheses that
B = 0. We tested the significance of the slope using a z-test given the value

t47 = —9.9898
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The F-value we obtained was

F1.47 =99.80
In fact,
(—9.9898) = 99.80
That is,
137 = Fl47
Recall that
tg =F1,

Thus, the 7-test and the F-test for the significance of the slope are equivalent.

9.2.5 Appropriateness of the Model

In Chapter 5 we considered the appropriateness of the model y ~ N(u, o2) for a set of data
and discussed briefly some ways of verifying the appropriateness of this model. In this section
we have the model

y~ N(x +,3X,0’12)

and want to consider its validity. At least three questions can be asked:

1. Is the relationship between Y and X linear?

2. The variance 012 is assumed to be constant for all values of X (homogeneity of variable).

Is this so?

3. Does the normal model hold?

Two very simple graphical procedures, both utilizing the residuals from regression y; — y;,
can be used to verify the assumptions above. Also, one computation on the residuals is useful.
The two graphical procedures are considered first.

To Check for: Graphical Procedure
1. Linearity of regression and Plot (y; — ;) against y;,
homogeneity of variance i=1,...,n
2. Normality Normal probability plot of

yi—3Yi,i=1,...,n

We illustrate these with data created by Anscombe [1973]. As we noted above, just five
summaries of the data specify everything about the linear regression model. Anscombe created
four data sets in which these five summaries, and thus the fitted model, were identical, but where
the data were very different. Only one of these sets of data is appropriate for linear regression.

Linearity of Regression and Homogeneity of Variance

Given only one predictor variable, X, the graph of ¥ vs. X will suggest nonlinearity or hetero-
geneity of variance, see the top row of regression patterns in Figure 9.7. But if there is more than
one predictor variable, as in Chapter 11, the simple two-dimensional graph is not possible. But
there is a way of detecting such patterns by considering residual plots y — ¥ against a variety of
variables. A common practice is to plot y — y against y; this graph is usually referred to as a
residual plot. The advantage is, of course, that no matter how many predictor variables are used,
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it is always possible to plot y —y. The second row of graphs in Figure 9.7 indicate the residual
patterns associated with the regression patterns of the top row. Pattern 1 indicates a reasonable
linear trend, pattern 2 shows a very strong pattern in the residuals. Pattern 3 has a single very
large residual, and in pattern 4 it is the distribution of X rather than Y that is suspicious.

Before turning to the questions of normality of the data, consider the same kind of analysis
carried out on the melanoma data. The residuals are plotted in the left panel of Figure 9.8. There
is no evidence that there is nonlinearity or heterogeneity of variance.

Normality

One way of detecting gross deviations from normality is to graph the residuals from regression
against the expected quantiles of a normal distribution as introduced in Chapter 4. The last row
of patterns in Figure 9.6 are the normal probability plots of the deviations from linear regression.
The last row in Figure 9.6 indicates that a normal probability plot indicates outliers clearly but
is not useful in detecting heterogeneity of variance or curvilinearity.

Of particular concern are points not fit closely by the data. The upper right and lower left
points often tail in toward the center in least squares plot. Points on the top far to the right and
on the bottom far to the left (as in pattern 2) are of particular concern.

The normal probability plot associated with the residuals of the melanoma are plotted in the
right panel of Figure 9.8. There is no evidence against the normality assumption.

9.2.6 Two-Sample ¢-Test as a Regression Problem

In this section we show the usefulness of the linear model approach by illustrating how the two
sample ¢-test can be considered a special kind of linear model. For an example, we again return
to the data on mortality rates due to melanoma contained in Table 9.1. This time we consider the
rates in relationship to contiguity to an ocean; there are two groups of states: those that border
on an ocean and those that do not. The question is whether the average mortality rate for the first
group differs from that of the second group. The ¢-test and analysis are contained in Table 9.6.

The mean difference, y; —y, = 31.486, has a standard error of 8.5468 so that the calculated
t-value is t = 3.684 with 47 degrees of freedom, which exceeds the largest value in the 7-table
at 40 or 60 degrees of freedom and consequently, p < 0.001. The conclusion then is that the
mortality rate due to malignant melanoma is appreciably higher in states contiguous to an ocean
as compared to “inland” states, the difference being approximately 31 deaths per 107 population
per year.
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Figure 9.8 Melanoma data (left) residuals (y — y) from regression lines ¥ = 389.19 — 589.8X plotted

against y and (right) normal quantile plot of residuals, y — .

Theoretical Quantiles
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Table 9.6 Comparison by Two-Sample ¢-Test of Mortality Rates Due to Melanoma (Y) by

Contiguity to Ocean

Contiguity to ocean
Number of states
Mean mortality
Variance?

Pooled variance

Standard error of difference

Mean difference
t-Value

Degrees of freedom
p-Value

No=0 Yes =1

ny =27 ny =22

y, = 138.741 ¥, = 170.227
5% = 697.97 53 = 111770
55 = 885.51

1
Spy| — + — = 8.5468
ni n2

t =3.684
d.f. =47
p < 0.001

“Subscripts on variances denote group membership in this table.

Now consider the following (equivalent) regression problem. Let ¥ be the mortality rate and
X the predictor variable; “X = contiguity to ocean” and X takes on only two values, 0, 1. (For
simplicity, we again label all the variables and parameters, Y, X, «, 8, and 012, but except for Y,
they obviously are different from the way they were defined in earlier sections.) The model is

Y ~ N(a + BX,0})

The data are graphed in Figure 9.9. The calculations for the regression line are as follows:

n = 49, b= @ = 31.487
[x~]
[y%] = 53637.265, a = 138.741

[xy] = 381.6939,

Regression line

[x2] = 12.12245, Y = 138.741 + 31.487X
T = 152.8776,  (n —2)s2 —[2]—[”]2
y = . s n Sy =Ly 2]
X = 0.44898, = 41,619.0488
52, = 88551

The similarity to the 7-test becomes obvious, the intercept a = 138.741 is precisely the mean
mortality for the “inland” states. The “slope,” b = 31.487, is the mean difference between the

two groups of states, and s

3_ » the residual variance, is the pooled variance. The ¢-test for the

slope is equivalent to the #-test for the difference in the two means.

52,
[x2]
88551

T 12.12245

= 73.0471

variance of slope = sg =
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Figure 9.9 Melanoma data: regression of mortality rate on contiguity to ocean, coded 0 if not contiguous
to ocean, 1 if contiguous to ocean.

sp = 8.5468
31.487

8.5468
3.684

The t-test for the slope has 47 degrees of freedom, as does the two-sample ¢-test. Note also
that s; is the standard error of the differences in the two-sample 7-test.
Finally, the regression analysis can be put into analysis of variance form as displayed in
Table 9.7:
[xy]?

[x2]
(381.6939)2
12.12245

= 12,018.22

27 [xy]2
[y 2]

= 53,637.26 — 12,018.22
=41,619.04

SS(regression) =

SS(residual)

We note that the proportion of variation in mortality rates attributable to “contiguity to
ocean” is

2 _ P/
[»?]

12,018.22

= 53,637.06

= 0.2241
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Table 9.7 Regression Analysis of Mortality and Contiguity

to Ocean

Source of Variation  d.f. SS MS F-Ratio
Regression 1 12,018.22  12,018.22 13.57¢
Residual 47  41,619.04 885.51

Total 48  53,637.26

“Significant at the 0.001 level.

Approximately 22% of the variation in mortality can be attributed to the predictor variable:
“contiguity to ocean.”

In Chapter 11 we deal with the relationships among the three variables: mortality, latitude,
and contiguity to an ocean. The predictor variable “contiguity to ocean,” which takes on only
two values, 0 and 1 in this case, is called a dummy variable or indicator variable. In Chapter 11
more use is made of such variables.

9.3 CORRELATION AND COVARIANCE

In Section 9.2 the method of least squares was used to find a line for predicting one variable from
the other. The response variable Y, or dependent variable Y, was random for given X. Even if X
and Y were jointly distributed so that X was a random variable, the model only had assumptions
about the distribution of Y given the value of X. There are cases, however, where both variables
vary jointly, and there is a considerable amount of symmetry. In particular, there does not seem
to be a reason to predict one variable from the other. Example 9.3 is of that type. As another
example, we may want to characterize the length and weight relationship of newborn infants.
The basic sampling unit is an infant, and two measurements are made, both of which vary. There
is a certain symmetry in this situation: There is no “causal direction”—length does not cause
weight, or vice versa. Both variables vary together in some way and are probably related to each
other through several other underlying variables which determine (cause) length and weight. In
this section we provide a quantitative measure of the strength of the relationship between the
two variables and discuss some of the properties of this measure. The measure (the correlation
coefficient) is a measure of the strength of the linear relationship between two variables.

9.3.1 Correlation and Covariance

We would like to develop a measure (preferable one number) that summarizes the strength of
any linear relationship between two variables X and Y. Consider Example 9.2, the exercise test
data. The X variable is measured in seconds and the Y variable is measured in milliliters per
minute per kilogram. When totally different units are used on the two axes, one can change the
units for one of the variables, and the picture seems to change. For example, if we went from
seconds to minutes where 1 minute was graphed over the interval of 1 second in Figure 9.2, the
data of Figure 9.2 would go almost straight up in the air. Whatever measure we use should not
depend on the choice of units for the two variables. We already have one technique of adjusting
for or removing the units involved: to standardize the variables. We have done this for the 7-test,
and we often had to do it for the construction of test statistics in earlier chapters. Further, since
we are just concerned with how closely the family of points is related, if we shift our picture
(i.e., change the means of the X and Y variables), the strength of the relationship between the
two variables should not change. For that reason, we subtract the mean of each variable, so that
the pictures will be centered about zero. In order that we have a solution that does not depend



CORRELATION AND COVARIANCE

313

. =
- -
« = L} '-
- e
. L4 .
3 " -
" L o *
.
. . = .
3
« . . =,
.
L I « *

a) Positive Relationship
(or Associgtion)

b) A Tighter Negative
Relationship

{or Association)

¢) No Relationship
{or Association)

Figure 9.10 Scatter diagrams for the standardized variables.

on units, we standardize each variable by dividing by the standard deviation. Thus, we are now
working with two new variables, say U and V, which are related to X and Y as follows:

X, —X Y, —Y
Uj=——, Vi=
Sy Sy

where

S)%zz(xi_y)z and szzz(yz’_?)z

n—1 Y n—1

Let us consider how the variables U; and V; vary together. In Figure 9.10 we see three
possible types of association. Part (a) presents a positive relationship, or association between,
the variables. As one increases, the other tends to increase. Part (b) represents a tighter, negative
relationship. As one decreases, the other tends to increase, and vice versa. By the word tighter,
we mean that the variability about a fitted regression line would not be as large. Part (c)
represents little or no association, with a somewhat circular distribution of points.

One mathematical function that would capture these aspects of the data results from mul-
tiplying U; and V;. If the variables tend to be positive or negative together, the product will
always be positive. If we add up those multiples, we would get a positive number. On the other
hand, if one variable tends to be negative when the other is positive, and vice versa, when we
multiply the U; and V; together, the product will be negative; when we add them, we will get
a negative number of substantial absolute value.

On the other hand, if there is no relationship between U and V, when we multiply them,
half the time the product will be positive and half the time the product will be negative; if we
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sum them, the positive and negative terms will tend to cancel out and we will get something
close to zero. Thus, adding the products of the standardized variables seems to be a reasonable
method of characterizing the association between the variables. This gives us our definition of
the correlation coefficient.

Definition 9.4. The sample Pearson product moment correlation coefficient, denoted by r,
or ryy, is defined to be

[xy] Y& =i — ) 1
r = = = Uuijvi
VDY VY@ =02y (-2 n-—l 2

This quantity is usually called the correlation coefficient.

Note that the denominator looks like the product of the sample standard deviations of X and
Y except for a factor of n — 1. If we define the sample covariance by the following equation,
we could define the correlation coefficient according to the second alternative definition.

Definition 9.5. The sample covariance, sy, is defined by

51y = Z xi =) =)

- n—1
1

Alternative Definition 9.4. The sample Pearson product moment correlation coefficient is
defined by
[xy] _ Sxy

VI sesy

The prefix co- is a prefix meaning “with,” “together,” and “in association,” occurring in words
derived from Latin: thus, the co-talks about the two variables varying together or in association.
The term covariance has the same meaning as the variance of one variable: how spread out
or variable things are. It is hard to interpret the value of the covariance alone because it is
composed of two parts; the variability of the individual variables and their linear association. A
small covariance can occur because X and/or Y has small variability. It can also occur because
the two variables are not associated. Thus, in interpreting the covariance, one usually needs to
have some idea of the variability in both variables. A large covariance, however, does imply
that at least one of the two variables has a large variance.

The correlation coefficient is a rescaling of the covariance by the standard deviations of X
and Y. The motivation for the construction of the covariance and correlation coefficient is the
following: sy, is the average of the product of the deviations about the means of X and Y. If
X tends to be large when Y is large, both deviations will be positive and the product will be
positive. Similarly, if X is small when Y is small, both deviations will be negative but their
products will still be positive. Hence, the average of the products for all the cases will tend to
be positive. If there is no relationship between X and Y, a positive deviation in X may be paired
with a positive or negative deviation in Y and the product will either be positive or negative,
and on the average will tend to center around zero. In the first case X and Y are said to be
positively correlated, in the second case there is no correlation between X and Y. A third case
results when large values of X tend to be associated with small values of Y, and vice versa. In
this situation, the product of deviations will tend to be negative and the variables are said to be
negatively correlated. The statistic r rescales the average of the product of the deviations about
the means by the standard deviations of X and Y.
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The statistic » has the following properties:

r has value between —1 and 1.

r = 1 if and only if all the observations are on a straight line with positive slope.
r = —1 if and only if all observations are on a straight line with negative slope.

r measures the extent of /inear association between two variables.

315

1.
2.
3.
4. r takes on the same value if X, or Y, changes units or has a constant added or subtracted.
5.
6.

r tends to be close to zero if there is no linear association between X and Y.

Some typical scattergrams and associated values of r are given in Figure 9.11. Figure 9.11(a)
and () indicate perfect linear relationships between two variables. Figure 9.11(c) indicates no
correlation. Figure 9.11(d) and (e) indicate typical patterns representing less than perfect cor-
relation. Figure 9.11(f) to (j) portray various pathological situations. Figure 9.11( f) indicates
that although there is an explicit relationship between X and Y, the linear relationship is zero;
thus » = 0 does not imply that there is no relationship between X and Y. In statistical ter-
minology, r = 0 does not imply that the variables are statistically independent. There is one
important exception to this statement that is discussed in Section 9.3.3. Figure 9.11(g) indicates
that except for the one extreme point there is no correlation. The coefficient of correlation is very
sensitive to such outliers, and in Section 9.3.7 we discuss correlations that are not as sensitive,
that is, more robust. Figure 9.11(h) indicates that an explicit relationship between X and Y is not
identified by the correlation coefficient if the relationship is not linear. Finally, Figure 9.11(j)

. " ..'
a. r=1 b. r=-1
-‘:: . .. :I.l
d. D<r<i e. -1<r<0Q
g. O«r<i h. O<r<i

Figure 9.11 Some patterns of association.

c. r=0
f. =0
bty
:"‘ . -5
L] ':
N e
‘: - o \.-‘
A
...I
. ~1<r<0
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suggests that there are three subgroups of cases; within each subgroup there is a positive cor-
relation, but the correlation is negative when the subgroups are combined. The reason is that
the subgroups have different means and care must be taken when combining data. For example,
natural subgroups defined by gender or race may differ in their means in a direction opposite
to the correlation within each subgroup.

Now consider Example 9.3. The scattergram in Figure 9.3 suggests a positive association
between the ATP level of the youngest son (X) and that of the oldest son (Y). The data for
this example produce the following summary statistics (the subscripts on the values of X and
Y have been suppressed: for example, Y x; = Y x).

n=17,
D x =18338, X = 4.90,
Dy =79.89, ¥ = 4.70,
> P =417.1874, Y (x—%)7 =8233024, 5, = 0717331
>y =379.6631, D (=) =422709%, 5, = 0513997

D xy=3953612, Y (x —X)(y —F) = 3.524247, s, = 0220265

0.220265
r =
(0.717331)(0.513997)

=0.597

In practice, r will simply be calculated from the equivalent formula

[xy] 3.524247 _3.524247

- - = =0.597
" b2l J/(5.233024)(3.227008)  5.899302

The sample correlation coefficient and covariance estimate the population parameters. The
expected value of the covariance is

E(Sey) = E((X — u) (Y — p1y))

= ny

where
uy =E(X) and puy=E(Y)

The population covariance is the average of the product of X about its mean times Y about its
mean.

The sample correlation coefficient estimates the population correlation coefficient p, defined
as follows:

Definition 9.6. Let (X, Y) be two jointly distributed random variables. The (population)
correlation coefficient is

_ Oxy E((X — po)(Y — :uy))

0,0y Jvar(X)var(Y)

where oy, is the covariance of X and Y, o, the standard deviation of X, and o, the standard
deviation of Y. p is zero if X and Y are statistically independent variables.

There is now a question about the statistical “significance” of a value r. In practical terms,
suppose that we have sampled 17 families and calculated the correlation coefficient in ATP



CORRELATION AND COVARIANCE 317

levels between the youngest son and the oldest son. How much variation could we have expected
relative to the value observed for this set? Could the population correlation coefficient p = 0?
In the next two sections we deal with this question.

9.3.2 Relationship between Correlation and Regression

In Section 9.2.4, r? was presented, indicating a close connection between correlation and regres-
sion. In this section, the connection will be made explicit in several ways. Formally, one of the
variables X, Y could be considered the dependent variable and the other the predictor variable
and the techniques of Section 9.2 applied. It is easy to see that in most cases the slope of the
regression of ¥ on X will not be the same as that of X on Y. To keep the distinction clear, the
following notation will be used:

byx = slope of the regression of the “dependent” variable Y on the “predictor” variable X

ay = intercept of the regression of ¥ on X
Similarly,

bxy = slope of the regression of the “dependent” variable X on the “predictor” variable Y

a, = intercept of the regression of X on Y

These quantities are calculated as follows:

Regress Y on X Regress X on Y
[xy] [xy]
Slope byx = m bxy = [y—z]
Intercept ay =Yy — by, X ay =X — byxyy
271 2 2 21 _ 2 2
Residual variance Sf_x = —[y 1= byl /1] S)%.y = —[x 1= Loyl /1]

n—2 n—2

From these quantities, the following relationships can be derived:

1. Consider the product
_ P
A2

:}“2

Hence
r = 2/byybyy

In words, r is the geometric mean of the slope of the regression of ¥ on X and the slope
of the regression of X on Y.

S S
byxzr—y, bxyzr—x

S, S,

where Sy and S, are the sample standard deviations of X and Y, respectively.
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3. Using the relationships in (2), the regression line of Y on X,

Y =ay+ by X

can be transformed to

Ih—2 =

byx

Sy-x/v [x2]

1—r2
r
n—2
Hence, testing the significance of the slope is equivalent to testing the significance of the
correlation.

is algebraically equivalent to

Consider Example 9.3 again. The data are summarized in Table 9.8. This table indicates that
the two regression lines are not the same but that the ¢-tests for testing the significance of the
slopes produce the same observed value, and this value is identical to the test of significance of
the correlation coefficient. If the corresponding analyses of variance are carried out, it will be
found that the F-ratio in the two analyses are identical and give an equivalent statistical test.

9.3.3 Bivariate Normal Distribution

The statement that a random variable Y has a normal distribution with mean p and variance o2

is a statement about the distribution of the values of Y and is written in a shorthand way as
2
Y ~N(u,o07)
Such a distribution is called a univariate distribution.

Definition 9.7. A specification of the distribution of two (or more) variables is called a
bivariate (or multivariate) distribution.

The definition of such a distribution will require the specification of the numerical character-
istics of each of the variables separately as well as the relationships among the variables. The
most common bivariate distribution is the normal distribution. The equation for the density of
this distribution as well as additional properties are given in Note 9.6.

We write that (X, Y) have a bivariate normal distribution as

(X, Y) ~ N(tx, ty, 07,07, p)
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Table 9.8 Regression Analyses of ATP Levels of Oldest and Youngest Sons

Dependent variable Ye X4
Predictor variable Xxb yb
Slope by, = 0.42806 byy =0.83373
Intercept ay = 2.59989 a, = 0.98668
Regression line Y = 2.600 + 0.428X X = 0.987 + 0.834Y
Variance about mean 52 = 0.26419 52 = 0.51456
Residual variance 52, =0.18123 s, =0.35298
Standard error of slope  sp,, = 0.14837 Sp,, = 0.28897
L ©0.42806 ©0.83373
Test of significance t;s = ———— = 2.885 s = ——— =
0.14837 0.28897
Correlation Txy =Ty =71 = 0.597401
L 0.597401
Test of significance s = —————
1 — (0.597401)?
17 -2
_0.597401
~0.20706
=2.885

Source: Data from Dern and Wiorkowski [1969].

“ATP level of oldest son.
b ATP level of youngest son.

Here wy, py, oxz, and o)? are the means and variances of X and Y, respectively. The quantity p
is the (population) correlation coefficient. If we assume this model, it is this quantity, p, that is
estimated by the sample correlation, r.

The following considerations may help to give you some feeling for the bivariate normal
distribution. A continuous distribution of two variables, X and Y, may be modeled as follows.
Pour 1 pound of sand on a floor (the X-Y plane). The probability that a pair (X, Y) falls into
an area, say A, on the floor is the weight of the sand on the area A. For a bivariate normal
distribution, the sand forms one mountain, or pile, sloping down from its peak at (i, iy), the
mean of (X, Y). Cross sections of the sand at constant heights are all ellipses. Figure 9.12 shows
a bivariate normal distribution. On the left is shown a view of the sand pile; on the right, a
topographical map of the terrain.

The bivariate normal distribution has the property that at every fixed value of X (or Y) the
variable Y (or X) has a univariate normal distribution. In particular, write

Y, = random variable Y at a fixed value of X = x

It can be shown that at this fixed value of X = x,
Oy 2 2
Yy ~N\|ay+ —px, o;(1—p)
Oy
This is the regression model discussed previously:

Y, ~ N(ot—{—ﬁx,crf)

where .
o=py—Bue. B=—=p. of=o0,(1-p?

Oy
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Figure 9.12 Bivariate normal distribution.

Similarly, for
Xy, = random variable X at a fixed value of ¥ =y

it can be shown that
Ox 2 2
Xy ~N (O{x + —=py,0;(1—=p ))
Oy

The null hypothesis By, = 0 (or, Byy = 0) is equivalent then to the hypothesis o = 0, and the
t-test for B = 0 can be applied.
Suppose now that the null hypothesis is
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where pg is an arbitrary but specified value. The sample correlation coefficient  does not have
a normal distribution and the usual normal theory cannot be applied. However, R. A. Fisher

showed that the quantity

1 1+4+r
Zr:EIOgel—r

has the following approximate normal distribution:

1 14+p 1
Z, ~N(=log, —2,
: (20gel—p n—3)

where n is the number of pairs of values of X and Y from which r is computed. Not only does
Z, have approximately a normal distribution, but the variance of this normal distribution does
not depend on the true value p; that is, Z, — Z, is a pivotal quantity (5.2). This is illustrated
graphically in Figure 9.13, which shows the distribution of 1000 simulated values of r and Z,
from distributions with p = 0 and p = 1/+/2 ~ 0.71. The distribution of r has a different
variance and different shape for the two values of p, but the distribution of Z, has the same
shape and same variance, differing only in location.

15 20
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Figure 9.13 Sampling distribution of correlation coefficient, r, before and after transformation, for
p=0,1/ «/E Estimated from 1000 samples of size 10.
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Although the approximate distribution of Z, was derived under the assumption of a bivariate
normal distribution for X and Y, it is not very sensitive to this assumption and is useful quite
broadly. Z, may be used to test hypotheses about p and to construct a confidence interval for
p. This is illustrated below. The inverse, or reverse, function to r is (e2% — 1)/(e?2 4+ 1). Z, is
also the inverse of the hyperbolic tangent, tanh. To “undo” the operation, tanh is used.

Consider again Example 9.3 involving the ATP levels of youngest and oldest sons in the 17
families. The correlation coefficient was calculated to be

r =0.5974

This value was significantly different from zero; that is, the null hypothesis p = 0 was rejected.
However, the authors show in the paper that genetic theory predicts the correlation to be p = 0.5.
Does the observed value differ significantly from this value? To test this hypothesis we use the
Fisher Z, transformation. Under the genetic theory, the null hypothesis stated in terms of Z, is

7 Lo (1705 1
vt o
r 2% \1-05) 17=3

~ N(0.5493, 0.07143)

The value observed is

1 1+ 0.5974
2= yioe. (1

~log, [ —="") = 0.6891
2 1—0.5974)

The corresponding standard normal deviate is

_0.6891 —0.5493  0.1398

= = 0.5231
+/0.07143 0.2673

This value does not exceed the critical values at, say, the 0.05 level, and there is no evidence
to reject this null hypothesis.

Confidence intervals for p may be formed by first using Z, to find a confidence interval for
1/21og,[(1 + p)/(1 — p)]. We then transform back to find the confidence interval for p. To
illustrate: a 100(1 — @)% confidence interval for 1/21og,[(1 4+ p)/(1 — p)] is given by

[ 1
Zr £ 21-ap2 m

For a 90% confidence interval with these data, the interval is (0 : 6891 — 1.645.,/1/14, 0.6891 +
1.645/1/14) = (0.249, 1.13). When Z, = 0.249, r = 0.244, and when Z, = 0.811. Thus the
90% confidence interval for p is (0.244, 0.811). This value straddles 0.5.

9.3.4 Critical Values and Sample Size

We discussed the ¢-test for testing the hypothesis p = 0. The formula was

r

thy= ———————
V(I =r)/(n—2)

This formula is very simple and can be used for finding critical values and for sample size
calculations: Given that the number of observation pairs is specified, the critical value for ¢ with
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n — 2 degrees of freedom is determined, and hence the r critical value can be calculated. For
simplicity, write f,_; = f; solving the equation above for 2 yields
2 _ r?

24 n-2

For example, suppose that n = 20, the corresponding 7-value with 18 degrees of freedom at the
0.05 level is 13 = 2.101. Hence,

2.101)2
e €
2.101)2 + 18

and the corresponding value for r is r +=0.444; that is, with 20 observations the value of r must
exceed 0.444 or be less than —0.444 to be significant at the 0.05 level. Table A.11 lists critical
values for r, as a function of sample size.

Another approach is to determine the sample size needed to “make” an observed value of r
significant. Algebraic manipulation of the formula gives

t2
n=— —1*+2
r

A useful approximation can be derived if it is assumed that we are interested in reasonably
small values of r, say r < 0.5; in this case, t = 2 at the 0.05 level and the formula becomes

(2

For example, suppose that r = 0.3; the sample size needed to make this value significant is

2 2
n=|(=) —2=44-2=4
(3)

A somewhat more refined calculation yields n = 43, so the approximation works reason-
ably well.

9.3.5 Using the Correlation Coefficient as a Measure of Agreement for Two Methods of
Measuring the Same Quantity

We have seen that for X and Y jointly distributed random variables, the correlation coefficient p
is a population parameter value: p is a measure of how closely X and Y have a linear association,
p? is the proportion of the Y variance that can be explained by linear prediction from X, and
vice versa.

Suppose that the regression holds and we may choose X. Figure 9.14 shows data from a
regression model with three different patterns of X variables chosen. The same errors were
added in each figure. The X values were spread out over larger and larger intervals. Since the
spread about the regression line remains the same and the range of Y increases as the X range
increases, the proportion of Y variability explained by X increases: 0.50 to 0.68 to 0.79. For
the same random errors and population regression line, » can be anywhere between 0 and 1,
depending on which X values are used! In this case the correlation coefficient depends not only
on the model, but also on experimental design, where the X’s are taken. For this reason some
authors say that the » should never be used unless one has a bivariate sample: Otherwise, we
do not know what r means; another experimenter with the same regression model could choose
different X values and obtain a radically different result.
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We discuss these ideas in the context of the exercise data of Example 9.2. Suppose that we
were strong supporters of maximal treadmill stress testing and wanted to show how closely
treadmill duration and VO, max are related. Our strategy for obtaining a large correlation
coefficient will be to obtain a large spread of X values, duration. We may know that some of
the largest duration and VO, pmax values were obtained by world-class cross-country skiers; so
we would recruit some. For low values we might search for elderly overweight and deconditioned
persons. Taking a combined group of these two types of subjects should result in a large value
of r. If the same experiment is run using only very old, very overweight, and very deconditioned
subjects, the small range will produce a small, statistically insignificant » value.

Since the same treadmill test procedure is associated with large and small r values, what does
r mean? A preferable summary indicator is the estimate, sy., of the residual standard deviation
o1. If the linear regression model holds, this would be estimated to be the same in each case.

Is it wrong to calculate or present r when a bivariate sample is not obtained? Our answer is
a qualified no; that is, it is all right to present r in regression situations provided that:

1. The limitations are kept in mind and discussed. Possible comments on the situation for
other sorts of X values might be appropriate.

2. The standard deviation of the residuals should be estimated and presented.

In Chapter 7, the kappa statistic was presented. This was a measure of the amount of
agreement when two categorical measurements of the same objects were available. If the two
measurements were continuous, the correlation coefficient r is often used as a measure of the
agreement of the two techniques. Such use of r is subject to the comments above.

9.3.6 Errors in Both Variables

An assumption in the linear regression model has been that the predictor variable could be
measured without error and that the variation in the dependent variable was of one kind only

3
Panel a
y = 0.5x + error "
x=-1.0,-09, ...,1.0 2
r=050
1 L]
-3 2 N B 2 3
.o
2
-3

Figure 9.14 The regression model ¥ = 0.5X 4 e was used. Twenty-one random N(0, 1) errors were
generated by computer. The same errors were used in each panel.
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Figure 9.14 (continued)

and could be modeled completely if the value of the predictor variable was fixed. In almost all
cases, these assumptions do not hold. For example, in measuring psychological characteristics
of individuals, there is (1) variation in the characteristics from person to person; and (2) error
in the measurement of these psychological characteristics. It is almost certainly true that this
problem is present in all scientific work. However, it may be that the measurement error is
“small” relative to the variation of the individuals, and hence the former can be neglected.
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Another context where the error is unimportant is where the scientific interest is in the variable
as measured, not some underlying quantity. For example, in examining how well blood pressure
predicts stroke, we are interested in practical prediction, not in what might hypothetically be
possible with perfect measurements.

The problem is difficult and we will not discuss it beyond the effect of errors on the corre-
lation coefficient. For a more complete treatment, consult Acton [1984] or Kendall and Stuart
[1967, Vol. 2], and for a discussion of measurement error in more complex models, see Carrol
et al. [1995].

Suppose that we are interested in the correlation between two random variables X and Y
which are measured with errors so that instead of X and Y, we observe that

W=X+d, V=Y+e

where d and e are errors. The sampling we have in mind is the following: a “case” is selected
at random from the population of interest. The characteristics X and Y are measured but with
random independent errors d and e. It is assumed that these errors have mean zero and variances
012 and 022, respectively. Another “case” is then selected and the measurement process is repeated
with error. Of interest is the correlation pxy between X and Y, but the correlation pyw is
estimated. What is the relationship between these two correlations? The correlation pxy can be

written
oxy

PXy = —2 >
‘/UXUY

The reason for writing the correlation this way can be understood when the correlation between
V and W is considered:

oxy
J©@3 + oD} +03)
oxy
UXUY\/(l +0l/0%) (1 +03/0f)
XY
J(+02/03) (1+a3/a})

pPVW =

The last two formulas indicate that the correlation between V and W is smaller in absolute value
than the correlation between X and Y by an amount determined by the ratio of the measurement
errors to the variance in the population. Table 9.9 gives the effect on pyy as related to the ratios
of 012/0}2( and 022/03.

A 10% error of measurement in the variables X and Y produces a 9% reduction in the
correlation coefficient. The conclusion is that errors of measurement reduce the correlation
between two variables; this phenomenon is called attenuation.

Table 9.9 Effect of Errors of Measurement on
the Correlation between Two Random Variables

(72 0'22 0'12 (722

J)2< U% pPVW 0)2( 0; PVW
0.05 0.05 0.95p0xy 0.20 0.20 0.83pxy
0.10 0.10 091pxy 0.30 0.30 0.77pxy
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Table 9.10 Schema for Spearman Rank Correlation

Case X Rank(X) Y Rank(Y) d = Rank(X)— Rank(Y)

I xRy » Ry di =Ry — Ry,
2 X2 Ry, V2 Ry, dy = Ry, — Ry,
3 X3 Ry, V3 Ry, d3 = Ry; — Ry,
n. Xp Ry, Yn Ry, dn = Rx, — Ry,

9.3.7 Nonparametric Estimates of Correlation

As indicated earlier, the correlation coefficient is quite sensitive to outliers. There are many
ways of getting estimates of correlation that are more robust; the paper by Devlin et al. [1975]
contains a description of some of these methods. In this section we want to discuss two methods
of testing correlations derived from the ranks of observations.

The procedure leading to the Spearman rank correlation is as follows: Given a set of n
observations on the variables X, Y, the values for X are replaced by their ranks, and similarly,
the values for Y. Ties are simply assigned the average of the ranks associated with the tied
observations. The scheme shown in Table 9.10 illustrates the procedure.

The correlation is then calculated between R, and Ry. In practice, the Spearman rank cor-
relation formula is used:

6 d?

n3—n

Is = }’Rny =1

It can be shown that the usual Pearson product-moment correlation formula reduces to this
formula when the calculations are made on the ranks, if there are no ties. Note: For one or two
ties, the results are virtually the same. It is possible to correct the Spearman formula for ties,
but a simpler procedure is to calculate r; by application of the usual product-moment formula
to the ranks. Table A.12 gives percentile points for testing the hypothesis that X and Y are
independent.

Example 9.4. Consider again the data in Table 9.3 dealing with the ATP levels of the oldest
and youngest sons. These data are reproduced in Table 9.11 together with the ranks, the ATP
levels being ranked from lowest to highest.

Note that the oldest sons in families 6 and 13 had the same ATP levels; they would have
been assigned ranks 12 and 13 if the values had been recorded more accurately; consequently,
they are both assigned a rank of 12.5. For this example,

n=17

> dP =2985

(6)(298.5)
17— 17

s = =1-0.3658 = 0.6342

This value compares reasonably well with the value r,, = 0.597 calculated on the actual data.
If the usual Pearson product-moment formula is applied to the ranks, the value r; = 0.6340 is
obtained. The reader may verify that this is the case. The reason for the slight difference is due
to the tie in values for two of the oldest sons. Table A.12 shows the statistical significance at
the two-sided 0.05 level since ry = 0.6342 > 0.490.

The second nonparametric correlation coefficient is the Kendall rank correlation coefficient.
Recall our motivation for the correlation coefficient r. If there is positive association, increase in
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Table 9.11 Rank Correlation Analysis of ATP Levels in
Youngest and Oldest Sons in 17 Families

Youngest Oldest
Family ATP Level Rank  ATP Level Rank d*
(X) x)

1 4.18 4 4.81 11 =7
2 5.16 12 4.98 14 -2
3 4.85 9 448 6 3
4 3.43 1 4.19 3 -2
5 4.53 5 4.27 4 1

6 5.13 11 4.87 12.5 —1.51
7 4.10 2 4.74 10 -8
8 4.77 7 4.53 7 0
9 4.12 3 3.72 1 2
10 4.65 6 4.62 8 -2
11 6.03 17 5.83 17 0
12 5.94 15 4.40 5 10
13 5.99 16 4.87 12.5 35
14 5.43 14 5.44 16 -2
15 5.00 10 4.70 9 1
16 4.82 8 4.14 2 6
17 5.25 13 5.30 15 -2

>d=0

S d? =298.5

9Rank(X) — rank(Y).

X will tend to correspond to increase in Y. That is, given two data points (X1, Y1) and (X2, Y2),
if X1 — X» is positive, Y| — Y5 is positive. In this case, (X1 — X»)(Y] — Y») is usually positive.
If there is negative association, (X1 — X2)(Y; — Y2) will usually be negative. If X and Y are
independent, the expected value is zero. Kendall’s rank correlation coefficient is based on this
observation.

Definition 9.8. Consider a bivariate sample of size n, (X1, Y1), ..., (Xn, ¥y). For each
pair, count 1 if (X; — X;)(¥; — Y;) > 0. Count —1 if (X; — X;)(¥; — ¥;) < 0. Count zero if
(X; — Xj)(¥; —Y;) =0. Let « be the sum of these n(n — 1)/2 counts. (Note that this « is not
related to the kappa of Chapter 7.) Kendall’s t is

K
="
nn—1)/2

1. The value of t is between —1 and 1. Under the null hypothesis of independence, t is
symmetric about zero.

2. Note that (Ry; — RXJ.)(RY,, — Ryj) has the same sign as (X; — X;)(¥; — Y;). That is,
both are positive or both are negative or both are zero. If we calculated v from the ranks
of the (X;, Y;), we get the same number. Thus, T is a nonparametric quantity based on
ranks; it does not depend on the distributions of X and Y.

3. The expected value of 7 is

PI(Xi — Xj)(Y; = Yj) > 0] = P[(Xi — Xj)(¥; = Y;) < 0]
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Table 9.12 Data for Example 9.4¢

2 1

3 -1 1

4 1 1 1

5 -1 1 1 1

6 1 1 1 1 1

7 1 I -1 1 -1 1

8§ -1 I -1 1 1 1 -1

9 1 1 -1 1 1 -1 1

10 -1 1 -1 1 1 1 -1 -1 1

11 1 1 1 1 1 1 1

2 -1 -1 -1 1 1 -1 -1 - 1 - 1

13 I -1 1 1 1 0 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 -1 -1

15 -1 1 1 1 1 1 -1 1 1 1 1 -1 1 1

16 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 1

“Consider (X; — X;)(Y; — Y;): the entries are 1 if this is positive, 0 if this equals 0, and —1 if this is negative.

4. For moderate to large n and no or few ties, an approximate standard normal test statistic is

K
L= DT

More information where there are ties is given in Note 9.7.
5. If (X; — X ;)(Y; —Y;) > 0, the pairs are said to be concordant. If (X; —X;)(¥; —Y;) <0,
the pairs are discordant.

Return to the ATP data of Table 9.11. (X| — X»)(Y1 —Y2) = (4.18—5.16)(4.81 —4.98) > 0,
so we count +1. Comparing each of the 17 x 16/2 = 136 pairs gives the +1’s, 0’s and —1’s in
Table 9.12. Adding these numbers, x = 67, and v = 67/(17 x 16/2) = 0.493. The asymptotic

Z-value is
67

— =2.67
V17 x 16 x 39/18

with p = 0.0076 (two-sided).

9.3.8 Change and Association

Consider two continuous measurements of the same quantity on the same subjects at different
times or under different circumstances. The two times might be before and after some treatment.
They might be for a person taking a drug and not taking a drug. If we want to see if there is
a difference in the means at the two times or under the two circumstances, we have several
statistical tests: the paired z-test, the signed rank test, and the sign test. Note that we have
observed pairs of numbers on each subject.

We now have new methods when pairs of numbers are observed: linear regression and corre-
lation. Which technique should be used in a given circumstance? The first set of techniques looks
for changes between the two measurements. The second set of techniques look for association
and sometimes the ability to predict. The two concepts are different ideas:
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1. Consider two independent length measurements from the same x-rays of a sample of
patients. Presumably there is a “true” length. The measurements should fluctuate about the
true length. Since the true length will fluctuate from patient to patient, the two readings
should be associated, hopefully highly correlated. Since both measurements are of the
same quantity, there should be little or no change. This would be a case where one
expects association, but no change.

2. Consider cardiac measurements on patients before and after a heart transplant. The initial
measurements refer to a failing heart. After heart transplant the measurements refer to the
donor heart. There will be little or no association because the measurements of output,
and so on, refer to different (somewhat randomly paired) hearts.

There are situations where both change and prediction or association are relevant. After
observing a change, one might like to investigate how the new changed values relate to the
original values.

9.4 COMMON MISAPPLICATION OF REGRESSION AND CORRELATION
METHODS

In this section we discuss some of the pitfalls of regression and correlation methods.

9.4.1 Regression to the Mean

Consider Figure 9.15, which has data points with approximately zero correlation or association,
considered as measurements before and after some intervention. On the left we see that the
before and after measurements have no association. The solid line indicates before = 0, and the
dashed line indicates before = after. On the right we plot the change against the value before
intervention. Again, the two lines are before = 0 and before = after (i.e., change = 0), and we
can see how selecting based on the value of the measurement before intervention distorts the
average change.

Cases with low initial values (circles on the graph) tend to have positive changes; those
with high initial values (triangles) have negative changes. If we admitted to our study only the
subjects with low values, it would appear that the intervention led to an increase. In fact, the
change would be due to random variability and the case selection. This phenomenon is called
regression to the mean.

As another example, consider subjects in a quantitative measurement of the amount of rash
due to an allergy. Persons will have considerable variability due to biology and environment.
Over time, in a random fashion, perhaps related to the season, the severity of rash will ebb and
flow. Such people will naturally tend to seek medical help when things are in a particularly
bad state. Following the soliciting of help, biological variability will give improvement with
or without treatment. Thus, if the treatment is evaluated (using before and after values), there
would be a natural drop in the amount of rash simply because medical help was solicited during
particularly bad times. This phenomenon again is regression to the mean. The phenomenon of
regression to the mean is one reason that control groups are used in clinical studies. Some
approaches to addressing it are given by Yanez et al. [1998].

9.4.2 Spurious Correlation

Consider a series of population units, for example, states. Suppose that we wish to relate the
occurrence of death from two distinct causes, for example, cancer at two different sites on the
body. If we take all the states and plot a scatter diagram of the number of deaths from the
two causes, there will be a relationship simply because states with many more people, such as
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Figure 9.15 Regression to the mean in variables with no association: Before vs. after and before vs.
change.

California or New York, will have a large number of deaths, compared to a smaller state such
as Wyoming or New Hampshire.

It is necessary to somehow adjust for or take the population into account. The most natural
thing to do is to take the death rate from certain causes, that is, to divide the number of deaths
by the population of the state. This would appear to be a good solution to the problem. This
introduces another problem, however. If we have two variables, X and Y, which are not related
and we divide them by a third variable, Z, which is random, the two ratios X/Z and Y/Z will
be related. Suppose that Z is the true denominator measured with error. The reason for the
relationship is that when Z is on the low side, since we are dividing by Z, we will increase
both numbers at the same time; when Z is larger than it should be and we divide X and Y
by Z, we decrease both numbers. The introduction of correlation due to computing rates using
the same denominator is called spurious correlation. For further discussion on this, see Neyman
[1952] and Kronmal [1993], who gives a superb, readable review. A preferable way to adjust for
population size is to use the techniques of multiple regression, which is discussed in Chapter 11.

9.4.3 Extrapolation beyond the Range of the Data

For many data sets, including the three of this chapter, the linear relationship does a reasonable
job of summarizing the association between two variables. In other situations, the relationship
may be reasonably well modeled as linear over a part of the range of X but not over the entire
range of X. Suppose, however, that data had been collected on only a small range of X. Then
a linear model might fit the accumulated data quite well. If one takes the regression line and
uses it as an indication of what would happen for data values outside the range covered by the
actual data, trouble can result. To have confidence in such extrapolation, one needs to know
that indeed the linear relationship holds over a broader range than the range associated with the
actual data. Sometimes this assumption is valid, but often, it is quite wrong. There is no way of
knowing in general to what extent extrapolation beyond the data gives problems. Some of the
possibilities are indicated graphically in Figure 9.16. Note that virtually any of these patterns of
curves, when data are observed over a short range, can reasonably be approximated by a linear
function. Over a wider range, a linear approximation is not adequate. But if one does not have
data over the wide range, this cannot be seen.

Sometimes it is necessary to extrapolate beyond the range of the data. For example, there is
substantial concern in Britain over the scale of transmission of “mad cow disease” to humans,
causing variant Creutzfeld—Jakob disease (vCJD). Forecasting the number of future cases is
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Figure 9.16 Danger of extrapolating beyond observed data.

important for public health, and intrinsically, requires extrapolation. A responsible approach to
this type of problem is to consider carefully what models (linear or otherwise) are consistent
with the data available and more important, with other existing knowledge. The result is a range
of predictions that acknowledge both the statistical uncertainty within each model and the (often
much greater) uncertainty about which model to use.

9.4.4 Inferring Causality from Correlation

Because two variables are associated does not necessarily mean that there is any causal con-
nection between them. For example, if one recorded two numbers for each year—the numbers
of hospital beds and the total attendance at major league baseball games—there would be a
positive association because both of these variables have increased as the population increased.
The direct connection is undoubtedly slight at best. Thus, regression and correlation approaches
show observed relationships, which may or may not represent a causal relationship. In general,
the strongest inference for causality comes from experimental data; in this case, factors are
changed by the experimenter to observe change in a response. Regression and correlation from
observational data may be very suggestive but do not definitively establish causal relationships.

9.4.5 Interpretation of the Slope of the Regression Line

During the discussion, we have noted that the regression equation implies that if the predictor
or independent variable X is higher by an amount A X, then on the average, Y is higher by an
amount AY = b AX. This is sometimes interpreted to mean that if we can modify a situation
such that the X variable is changed by AX, the Y variable will change correspondingly; this
may or may not be the case. For example, if we look at a scatter diagram of adults’ height and
weight, it does not follow if we induce a change in a person’s weight, either by dieting or by
excess calories that the person’s height will change correspondingly. Nevertheless, there is an
association between height and weight. Thus, the particular inference depends on the science
involved. Earlier in this chapter, it was noted that from the relation between VO; pmax and
the duration of the exercise test that if a person is trained to have an increased duration, the
VO, max will also increase. This particular inference is correct and has been documented by
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serial studies recording both variables. It follows from other data and scientific understanding.
It is not a logical consequence of the observed association.

9.4.6 Outlying Observations

As noted above, outlying observations can have a large effect on the actual regression line (see
Figure 9.7, for example). If one examines these scattergrams or residual plots, the problem should
be recognized. In many situations, however, people look at large numbers of correlations and do
not have the time, the wherewithal, or possibly the knowledge to examine all of the necessary
visual presentations. In such a case, an outlier can be missed and data may be interpreted
inappropriately.

9.4.7 Robust Regression Models

The least squares regression coefficients result from minimizing

> e(Yi—a—bX;)

i=1

where the function g(z) = z2. For large z (large residuals) this term is very large. In the
second column of figures in Figure 9.7 we saw that one outlying value could heavily modify an
otherwise nice fit.

One way to give less importance to large residuals is to choose the function g to put less
weight on outlying values. Many robust regression techniques take this approach. We can choose
g so that for most z, g(z) = z2, as in the least squares estimates, but for very large |z|, g(z) is
less than z2, even zero for extreme z! See Draper and Smith [1998, Chap. 25] and Huber [2003,
Chap. 7]. These resistant M—estimators protect against outlying Y but not against outlying X,
for which even more complex estimators are needed. It is also important to note that protection
against outliers is not always desirable. Consider the situation of a managed care organization
trying to determine if exercise reduces medical costs. A resistant regression estimator would
effectively ignore information on occasional very expensive subjects, who may be precisely the
most important in managing costs. See Chapter 8 and Lumley et al. [2002] for more discussion
of these issues.

NOTES
9.1 Origin of the Term Regression

Sir Francis Galton first used the term in 1885. He studied the heights of parents and offspring.
He found (on the average) that children of tall parents were closer to the average height (were
shorter); children of short parents were taller and closer to the average height. The children’s
height regressed to the average.

9.2 Maximum Likelihood Estimation of Regression and Correlation Parameters

For a data set from a continuous probability density, the probability of observing the data is
proportional to the probability density function. It makes sense to estimate the parameters by
choosing parameters to make the probability of the observed data as large as possible. Such esti-
mates are called maximum likelihood estimates (MLEs). Knowing X1, ..., X, in the regression
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problem, the likelihood function for the observed Y1, ..., Y, is (assuming normality)
n
[T—=—ew {—L[Y- Sy ﬂX»)]z}
i V2mo 2027 '

The maximum likelihood estimates of « and S are the least squares estimates a and b. For the
bivariate normal distribution, the MLE of p is r.

9.3 Notes on the Variance of a, Variance of a + bx, and Choice of x for Small Variance
(Experimental Design)

1. The variance of a in the regression equation y = a + bx can be derived as follows:
a =7y + bx; it is true that y and b are statistically independent; hence,

var(a) = var(y + bx)

= var(y) + x’var(b)
0_12 32 0_12
n [x2]

_e(l
—a\5 [x2]

2. Consider the variance of the estimate of the mean of y at some arbitrary fixed point X:

2 l (x — f)z
oq (n + 7[)(2] )

. Given a choice of x, the quantity is minimized at x = X.

T o

. For values of x close to X the contribution to the variance is minimal.
c. The contribution increase as the square of the distance the predictor variable x is from

X.

d. If there was a choice in the selection of the predictor variables, the quantity [x%] =
> (xi — ¥)? is maximized if the predictor variables are spaced as far apart as possible.
If X can have a range of values, say, Xmin t0 Xmax, the quantity [x2] is maximized
if half the observations are placed at Xpi, and the other half at Xpax. The quantity
(x — X)2/[x?] will then be as small as possible. Of course, a price is paid for this
design: it is not possible to check the linearity of the relationship between ¥ and X.

9.4 Average-Slope Formula for b

An alternative formula for the slope estimate b emphasizes the interpretation as an average
difference in Y for each unit difference in X. Suppose that we had just two points (X1, Y1) and
(X2, Y»). The obvious estimate of the slope comes from simply joining the points with a line:

With more than two points we could calculate all the pairwise slope estimates

Yi—Y;

| T ——
YTXi - X



NOTES 335

and then take some summary of these as the overall slope. More weight should be give to
estimates b;; where X; — X; is larger, as the expected difference in Y, B(X; — X;) is larger
relative to the residual error in ¥; and Y. If we assign weights w;; = (X; — Xj)z, a little algebra
shows that an alternative formula for the least squares estimate b is

b 2 wijbij
D Wij

a weighted average of the pairwise slopes.

This formulation makes it clear that b estimates the average slope of Y with respect to X
under essentially no assumptions. Of course, if the relationship is not at least roughly linear, the
average slope may be of little practical interest, and in any case some further assumptions are
needed for statistical inference.

9.5 Regression Lines through the Origin

Suppose that we want to fit the model ¥ ~ N(BX,c?), that is, the line goes through the
origin. In many situations this is an appropriate model (e.g., in relating body weight to height,
it is reasonable to assume that the regression line must go through the origin). However, the
regression relationship may not be linear over the entire range, and often, the interval of interest
is quite far removed from the origin.

Given n pairs of observation (x;, y;),i = 1,...,n, and a regression line through the origin
is desired, it can be shown that the least squares estimate, b, of B is
p o 2 Xidi

= szz

The residual sum of squares is based on the quantity

D i == (i —bx)?

and has associated with it, n — 1 degrees of freedom, since only one parameter, $, is estimated.

9.6 Bivariate Normal Density Function

The formula for the density of the bivariate normal distribution is

1 1
fxy(x,y) = exp [— (Z% = 2pZxZy + 22)]
2noxoyy/1 — p? 20 —p2) X Y
where . B
ZX = Hx and Zy = Y My
ox oy

The quantities ux, iy, ox, and oy are, as usual, the means and standard deviations of X and
Y, respectively. Several characteristics of this distribution can be deduced from this formula:

1. If p = 0, the equation becomes

1
fxyx,y) = exp |:—§(Z§( + Z%)]

Zﬂaxo'y
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and can be written as

:;exp< 1 2) exp( 122>
\/EUX \/_O'Y
= fx () fr(»)

Thus in the case of the bivariate normal distribution, p = 0 (i.e., the correlation is zero),
implies that the random variables X and Y are statistically independent.

2. Suppose that fx y(x, y) is fixed at some specified value; this implies that the expression
in the exponent of the density fx y(x, y) has a fixed value, say, K

—1 x—pux)? X —Ux y— Uy y—uy\?
= 2 _2:0 +
2(1 = p*) ox ox oy oy

This is the equation of an ellipse centered at (uy, iy).

9.7 Tiesin Kendall’s Tau

When there are ties in the X; and/or Y; values for Kendall’s tau, the variability is reduced. The
asymptotic formula needs to be adjusted accordingly [Hollander and Wolfe, 1999]. Let the X;
values have g distinct values with ties with ¢; tied observations at the jth tied value. Let the
Y; values have A distinct tied values with u; tied observations at the kth tied value. Under the
null hypothesis of independence between the X and Y values, the variance of K is

nin—1)2n+5)
18

_Xg:tj(tj -2t +5)
18

var(K) =

j=1
2": i (g, — 1)(2uk +5)

[Z§:1 ity = D(; — 2)] [Z,i;l ug(ug — 1) (ug — 2)]
* Inn —1)(n —2)

[Z‘jzl 1(tj — 1)] [Zle u (g — 1)]
* 2n(n — 1)

The asymptotic normal Z value is
K

Jvar(K)
Note that the null hypothesis is independence, not v = 0. If the data are not independent but
nevertheless have t = 0 (e.g., a U-shaped relationship), the test will be incorrect.
9.8 Weighted Regression Analysis

In certain cases the assumption of homogeneity of variance of the dependent variable, Y, at all
levels of X is not tenable. Suppose that the precision of value Y = y is proportional to a value
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W, the weight. Usually, the precision is the reciprocal of the variance at X;. The data can then
be modeled as follows:

Case X Y w

—_—

X1y w
2 X2 y2 w2

[ Xi Vi wi

n Xn  Yn Wn

Define 3 w;(x; — ¥)? = [wx?], Y w(x; — X)(y; —¥) = [wxy]. It can be shown that the
weighted least squares line has slope and intercept,

b [wxy]
[wx?]

and a=Yy—bx

where

Z Wi yi i 7 Z Wi X;
~—— ad x="T"—F—
>ul >ul

It is a weighted least squares solution in that the quantity > w;(y; — 3;)? is minimized. If all
the weights are the same, say equal to 1, the ordinary least squares solutions are obtained.

Y:

9.9 Model-Robust Standard Error Estimates

We showed that Student’s f-test can be formulated as a regression problem. This raises the
question of whether we can also find a regression formulation of the Z-test or the unequal-
variance approximate 7-test of Note 5.2. The answer is in the affirmative. Standard error estimates
are available that remove subsidiary assumptions such as equality of variance for a wide range
of statistical estimators. These model-robust or “sandwich” standard errors were discovered
independently in different fields of statistics and are typically attributed to Huber in biostatistics
and to White in econometrics. The Huber—White standard error estimates are available for linear
models in SAS and for nearly all regression models in State. In the case of linear regression
with a binary X variable, they are equivalent to the unequal-variance -test except that there is
not complete agreement on whether n or n — 1 should be used as a denominator in computing
variances. See Huber [2003] for further discussion.

PROBLEMS
In most of the problems below, you are asked to perform some subset of the following tasks:

(a) Plot the scatter diagram for the data.
(b) Compute for X, 7, [x2], [yz], and [ xy] those quantities not given.
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ASSOCIATION AND PREDICTION: LINEAR MODELS WITH ONE PREDICTOR VARIABLE

Find the regression coefficients a and b.

Place the regression line on the scatter diagram.
Ve o2

Give sy, and sy.x.

Compute the missing predicted values, residuals, and normal deviates for the given
portion of the table.

Plot the residual plot.

Interpret the residual plot.

Plot the residual normal probability plot.
Interpret the residual normal probability plot.

i. Construct the 90% confidence interval for S.

ii. Construct the 95% confidence interval for 8.
iii. Construct the 99% confidence interval for S.
iv. Compute the ¢-statistic for testing § = 0. What can you say about its p-

value?
i. Construct the 90% confidence interval for «.

ii. Construct the 95% confidence interval for «.

iii. Construct the 99% confidence interval for «.

Construct the ANOvA table and use Table A.7 to give information about the p-
value.

Construct the 95% confidence interval for o + X at the X value(s) specified.

Construct the interval such that one is 95% certain that a new observation at the
specified X value(s) will fall into the interval.

Compute the correlation coefficient r.
i. Construct the 90% confidence interval for p.

ii. Construct the 95% confidence interval for p.

iii. Construct the 99% confidence interval for p.

Test the independence of X and Y using Spearman’s rank correlation coefficient.
Compute the coefficient.

Test the independence of X and Y using Kendall’s rank correlation coefficient.
Compute the value of the coefficient.

Compute Student’s paired ¢-test for the data, if not given; in any case, inter-
pret.

Compute the signed rank statistic, if not given; in any case, interpret.

The first set of problems, 9.1 to 9.4, come from the exercise data in Example 9.2.

Suppose that we use duration, X, to predict VO2 max, Y. The scatter diagram is shown
in Figure 9.2. X = 647.4,Y = 40.57, [x?] = 673,496.4, [y*] = 3506.2, and [xy] =
43,352.5. Do tasks (c), (e), (f), (h), (k-ii), (k-iv), (I-ii), (m), (n) at x = 650, (p), and (qg-ii)
(the residual plot is Figure 9.17). All the data are listed in Table 9.13. What proportion
of the Y variance is explained by X? (In practice, duration is used as a reasonable
approximation to VO> max.)
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Figure 9.17 Residual plot for the data of Example 9.2; VO, max predicted from duration.

Table 9.13 Oxygen Data for Problem 9.1

X Y Y Y —Y Normal Deviate
706 415 44.5 -3.0 -0.80
732 459 46.13 —0.23 —0.06
930 54.5 ? ? ?
900 60.3 ? 3.59 0.96
903 60.5 56.90 3.60 0.97
976 64.6 61.50 3.10 0.83
819 474 ? —4.21 —1.13
922 57.0 58.10 —1.10 -0.29
600 40.2 37.82 ? 0.64
540 352 ? 1.16 0.31
560 33.8 3530 —1.50 ?
637 38.8 40.15 —1.35 -0.36
593 389 ? 1.52 041
719 495 4531 ? 1.23
615 37.1 38.77 —1.67 —0.45
589 322 37.13 ? —1.32
478 313 30.14 1.16 0.31
620 33.8 39.08 —5.28 ?
710 437 4475 —1.05 -0.28
600 41.7 37.82 3.88 1.04
660 41.0 41.60 —0.60 —0.16

9.2 One expects exercise performance to reduce with age. In this problem, X = age and
Y = duration. X = 47.2,Y = 647.4, [x?] = 4303.2, [y*] = 673,496.4, and [xy] =
—36, 538.5. Do tasks (c), (e), (k-i), (I-1), (p), and (q-i).
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ASSOCIATION AND PREDICTION: LINEAR MODELS WITH ONE PREDICTOR VARIABLE

To see if maximum heart rate changes with age, the following numbers are found where
X = age and ¥ = maximum heart rate. X = 47.2,Y = 174.8, [x?] = 4303.2, [y?] =
5608.5, and [xy] = —2915.4. Do tasks (c), (e), (k-iii), (k-iv), (m), (p), and (p-iii).

The relationship between height and weight was examined in these active healthy males.
X = height, Y = weight, X = 177.7,Y = 77.8, [x%] = 1985.2, [y*] = 3154.5, and
[xy] = 1845.6. Do tasks (c), (e), (m), (p), and (g-i). How do the p-values for the F-
test [in part (m)] and for the transformed Z for r compare? There were two normal
deviates of values 3.44 and 2.95. If these two people were removed from the calculation,
X = 177.5,Y = 76.7, [x?] = 1944.5, [y?] = 2076.12, and [xy] = 1642.5. How much
do the regression coefficients a and b, and correlation coefficient r, change?

Problems 9.5 to 9.8 also refer to the Bruce et al. [1973] paper, as did Example 9.2 and
Problems 9.1 to 9.4. The data for 43 active females are given in Table 9.14.

The duration and VO, max relationship for the active females is studied in this problem.
X =514.9,Y =29.1, [x?] = 251, 260.4, [y*] = 1028.7, and [xy] = 12, 636.5. Do tasks
(c), (e), (), (g), (h), (1), (j), (k-iv), (m), (p), and (qg-ii). Table 9.15 contains the residuals.
If the data are rerun with the sixth case omitted, the values of X, Y, [x2], [y2], and [xy]
are changed to 512.9, 29.2, 243,843.1, 1001.5, and 13,085.6, respectively. Find the new
estimates a, b, and r. By what percent are they changed?

With X = age and ¥ = duration, X = 45.1,Y = 514.9, [x?] = 4399.2,[y*] =
251,260.4, and [xy] = —22,911.3. For each 10-year increase in age, how much does
duration tend to change? What proportion of the variability in VO3 max is accounted
for by age? Do tasks (m) and (q-ii).

With X = ageand Y = maximum heartrate, X = 45.1, 7 = 180.6, [x%] = 4399.2, [y?] =
5474.6, and [xy] = —2017.3. Do tasks (c), (e), (k-1), (k-iv), (I-1), (m), (n) at X = 30 and
X =50, (o) at X =45, (p), and (q-ii).

X = height and ¥ = weight, X = 164.7,Y = 61.3, [x?] = 1667.1, [y?] = 2607 .4,
and [xy] = 1006.2. Do tasks (c), (e), (h), (k-iv), (m), and (p). Check that t2 = F. The
residual plot is shown in Figure 9.18.

For Problems 9.9 to 9.12, additional Bruce et al. [1973] data are used. Table 9.16 presents
the data for 94 sedentary males.

The duration, X, and VOs max, Y, give X = 577.1,Y = 35.6, [x%] = 1, 425,990.9,
[y?] = 5245.3, and [xy] = 78,280.1. Do tasks (c), (e), §), (k-i), (k-iv), (I-i), (m),
and (p). The normal probability plot is shown in Figure 9.19.

X = age is related to ¥ = duration. X = 49.8,Y = 577.1, [x%] = 11,395.7, [y?] =
1,425,990.9, and [xy] = —87, 611.9. Do tasks (c), (e), (m), (p), and (g-ii).

The prediction of age by maximal heart rate for sedentary males is considered here.
X = 49.8,Y = 18.6,[x%] = 11,395.7,[y?] = 32,146.4, and [xy] = —12,064.1.
Do tasks (c), (m), and (p). Verify (to accuracy given) that (X, Y) lies on the regres-
sion line.

The height and weight data give X = 177.3,Y = 79.0, [x%] = 4030.1, [y?] = 7060.0,
and [xy] = 2857.0. Do tasks (c), (e), (k-iv), (n) at X = 160, 170, and 180, and (p).
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Table 9.14 Exercise Data for Healthy Active Females

Duration VO; yax Heart Rate Age Height Weight

660 38.1 184 23 177 83
628 38.4 183 21 163 52
637 41.7 200 21 174 61
575 335 170 42 160 50
590 28.6 188 34 170 68
600 239 190 43 171 68
562 29.6 190 30 172 63
495 273 180 49 157 53
540 332 184 30 178 63
470 26.6 162 57 161 63
408 23.6 188 58 159 54
387 23.1 170 51 162 55
564 36.6 184 32 165 57
603 35.8 175 42 170 53
420 28.0 180 51 158 47
573 33.8 200 46 161 60
602 33.6 190 37 173 56
430 21.0 170 50 161 62
508 31.2 158 65 165 58
565 31.2 186 40 154 69
464 23.7 166 52 166 67
495 24.5 170 40 160 58
461 30.5 188 52 162 64
540 259 190 47 161 72
588 32.7 194 43 164 56
498 26.9 190 48 176 82
483 24.6 190 43 165 61
554 28.8 188 45 166 62
521 259 184 52 167 62
436 244 170 52 168 62
398 26.3 168 56 162 66
366 232 175 56 159 56
439 24.6 156 51 161 61
549 28.8 184 44 154 56
360 19.6 180 56 167 79
566 31.4 184 40 165 56
407 26.6 156 53 157 52
602 30.6 194 52 161 65
488 27.5 190 40 178 64
526 30.9 188 55 162 61
524 339 164 39 166 59
562 323 185 57 168 68
496 26.9 178 46 156 53

Source: Data from Bruce et al. [1973].

Mehta et al. [1981] studied the effect of the drug dipyridamole on blood platelet function in
eight patients with at least 50% narrowing of one or more coronary arteries. Active platelets
are sequestered in the coronary arteries, giving reduced platelet function in the coronary venous
blood, that is, in blood leaving the heart muscle after delivering oxygen and nutrients. More
active platelets in the coronary arteries can lead to thrombosis, blood clots, and a heart attack.
Drugs lessening the chance of thrombosis may be useful in treatment.
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Table 9.15 Data for Problem 9.5

X Y Y Residual  Normal Deviate
660 38.1 36.35 1.75 0.56
628 384 3474 3.66 1.18
637 41.7 35.19 6.51 2.10
575 33,5 32.08 1.42 0.46
590 28.6 32.83 —4.23 —1.37
600 23.9 ? ? ?
562 29.6 3142 —1.82 —0.59
495 273 28.05 —-0.75 -0.24
540 332 ? 2.88 0.93
470  26.6 26.80 -0.20 —0.06
408 23.6 23.68 -0.07 -0.02
387 23.1 22.62 0.48 0.15
564  36.6 31.52 5.08 1.64
603 358 3349 2.21 0.75
420 28.0 24.28 3.72 1.20
573  33.8 ? ? 0.59
602 33.6 3343 0.17 0.05
430 21.0 24.78 —-3.78 ?
508 312 28.71 2.49 ?
565 312  31.57 -0.37 -0.12
464 237 2649 -2.79 —-0.90
495 245 28.05 —3.55 —1.10
461 30.5 26.34 4.16 1.34
540 259 3032 —4.42 —1.43
588  32.7 ? -0.03 —0.00
498 269 ? —1.30 —-0.42
483 246 2745 —2.85 -0.92
554 28.8 31.02 —2.22 -0.72
521 259 29.36 —3.46 —1.12
436 244  25.09 —0.69 —-0.22
398 263 23.18 3.12 1.01
366 232 21.57 1.63 0.53
439 246 2524 —0.64 —0.21
549 28.8  30.77 —-1.97 —0.64
360 19.6 21.26 —1.66 —0.54
566 314 31.62 -0.22 -0.07
407 26.6 23.63 297 0.96
602 30.6 3343 —2.83 -0.92
488 275 27.70 -0.20 —0.06
526 309 29.61 1.29 0.42
524 339 2951 4.39 1.42
562 323 3142 0.88 0.28
496 269 28.10 —1.20 -0.39

Platelet aggregation measures the extent to which platelets aggregate or cluster together in
the presence of a chemical that stimulates clustering or aggregation. The measure used was the
percent increase in light transmission after an aggregating agent was added to plasma. (The
clustering of the cells make more “holes” in the plasma to let light through.) Two aggregating
agents, adenosine diphosphate (ADP) and epinephrine (EPI), were used in this experiment. A
second measure taken from the blood count was the count of platelets.
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343

Blood was sampled from two sites, the aorta (blood being pumped from the heart) and the
coronary sinus (blood returning from nourishing the heart muscle). Control samples as well as
samples after intravenous infusion of 100 mg of dipyridamole were taken. The data are given
in Table 9.17 and 9.18. Problems 9.13 to 9.22 refer to these data.
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Table 9.16 Exercise Data for Sedentary Males

Duration VO, max  Heart Rate Age  Height Weight

360 24.7 168 40 175 96
770 46.8 190 25 168 68
663 412 175 41 187 82
679 314 190 37 176 82
780 45.7 200 26 179 73
727 47.6 210 28 185 84
647 38.6 208 26 177 77
675 432 200 42 162 72
735 482 196 30 188 85
827 50.9 184 21 178 69
760 47.2 184 33 182 87
814 41.8 208 31 182 82
778 429 184 29 174 73
590 35.1 174 42 188 93
567 37.6 176 40 184 86
648 473 200 40 168 80
730 444 204 44 183 78
660 46.7 190 44 176 81
663 41.6 184 40 174 78
589 40.2 200 43 193 92
600 35.8 190 41 176 68
480 30.2 174 44 172 84
630 38.4 164 39 181 72
646 413 190 39 187 90
630 31.2 190 42 173 69
630 42.6 190 53 181 53
624 39.4 172 57 172 57
572 354 164 58 181 58
622 359 190 61 168 61
209 16.0 104 74 171 74
536 29.3 175 57 181 57
602 36.7 175 49 175 49
727 43.0 168 53 172 53
260 15.3 112 75 170 75
622 423 175 47 185 47
705 43.7 174 51 169 51
669 40.3 174 65 170 65
425 28.5 170 56 167 56
645 38.0 175 50 177 50
576 30.8 184 48 188 48
605 40.2 156 46 187 46
458 29.5 148 61 185 61
551 323 188 49 182 49
607 355 179 53 179 53
599 353 166 55 182 55
453 323 160 69 182 69
337 23.8 204 68 176 68
663 414 182 47 171 47
603 39.0 180 48 180 48
610 38.6 190 55 180 55

472 31.5 175 53 192 85
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Table 9.16 (continued)

Duration VO, pvyax Heat Rate Age Height Weight

458 25.7 166 58 178 81
446 24.6 160 50 178 7
532 30.0 160 51 175 82
656 42.0 186 52 176 73
583 34.4 175 52 172 7
595 34.9 180 48 179 78
552 355 156 45 167 89
675 38.7 162 58 183 85
622 384 186 45 175 76
591 324 170 62 175 79
582 33.6 156 63 171 69
518 30.0 166 57 174 75
444 28.9 170 48 180 105
473 295 175 52 177 7
490 304 168 59 173 74
596 34.4 192 46 190 92
529 37.0 175 54 168 82
652 434 156 54 180 85
714 46.0 175 46 174 7
646 43.0 184 45 178 80
551 29.3 160 54 172 86
601 36.8 184 48 169 82
579 35.0 170 54 180 80
325 21.9 140 61 175 76
392 254 168 60 180 89
659 40.7 178 45 181 81
631 33.8 184 48 173 74
405 28.8 170 63 168 79
560 35.8 180 60 181 82
615 40.3 190 47 178 78
580 334 180 66 173 68
530 39.0 174 47 169 64
495 23.2 145 69 171 84
330 20.5 138 60 185 87
600 36.4 200 50 182 81
443 235 166 50 175 84
508 29.7 188 61 188 80
596 432 168 57 174 66
461 30.4 170 47 171 65
583 34.7 164 46 187 83
620 37.1 174 61 165 71
620 41.4 190 45 171 79
180 19.8 125 71 185 80

Source: Data from Bruce et al. [1973]

9.13 Relate the control platelet counts in tﬂe aorta, X, and coronary sinus, Y. Do tasks (a),
(b), (c), (d), (e), compute the (X, Y, Y, residual, normal deviate) table, (g), (h), (i), (),
(k-i), (k-iv), (1), (m), (p), (1), and (s).

9.14 Look at the association between the platelet counts in the aorta, X, and coronary sinus,
Y, when being treated with dipyridamole. Do tasks (a), (b), (c), (d), (m), (r), and (s).
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Table 9.17 Platelet Aggregation Data for Problem 9.12

Platelet Aggregation (%)

Control Dipyridamole

Aorta  Coronary Sinus  Aorta  Coronary Sinus

Case EPI ADP EPI ADP EPI ADP EPI ADP

1 87 175 89 23 89 75 89 35
2 70 23 42 14 45 16 47 18
3 9% 75 96 31 9 83 96 84
4 65 51 70 33 70 55 70 57
5 8 16 79 4 69 13 53 22
6 98 83 98 80 83 70 94 88
777 14 97 13 84 35 73 67
8§ 98 50 99 40 85 50 91 48
Mean 85 48 84 30 78 50 71 52
+SEM 5 10 7 8 6 9 7 9

Source: Data from Mehta et al. [1981].

Examine the control platelet aggregation percent for EPI, X, and ADP, Y, in the aorta.
Do tasks (a), (b), (c), (d), (e), and (m).

Examine the association between the EPI, X, and ADP, Y, in the control situation at the
coronary sinus. Do tasks (a), (b), (¢), (d), (e), (m), (p), (r), and (s).

Interpret at the 5% significance level. Look at the platelet aggregation % for epinephrine
in the aorta and coronary sinus under the control data. Do tasks (m), (p) and (t), (u).
Explain in words how there can be association but no (statistical) difference between the
values at the two locations.

Under dipyridamole treatment, study the platelet aggregation percent for EPI in the aorta,
X, and coronary sinus, Y. Do tasks (a), (b), (¢), (d), (e), (), (h), (m), (p), (1), (s), (V),
and (u).

The control aggregation percent for ADP is compared in the aorta, X, and coronary sinus,
Y, in this problem. Do tasks (a), (b), (c), (d), (e), (f), (), (), (i), (i), (m), (p), and (g-ii).

Under dipyridamole, the aggregation percent for ADP in the aorta, X, and coronary
sinus, Y, is studied here. Do tasks (b), (c), (e), (k-ii), (k-iv), (I-ii), (m), (p), (g-ii), (1),
and (s).

The aortic platelet counts under the control, X, and dipyridamole, Y, are compared in
this problem. Do tasks (b), (c), (e), (m), (p), (g-ii), (t), and (u). Do the platelet counts
differ under the two treatments? (Use o = 0.05.) Are the platelet counts associated under
the two treatments? (o = 0.05.)

The coronary sinus ADP aggregation percent was studied during the control period, the
X variable, and on dipyridamole, the Y variable. Do tasks (b), (c), (d), (e), (m), and
(t). At the 5% significance level, is there a change between the treatment and control
periods? Can you show association between the two values? How do you reconcile these
findings?
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Table 9.18 Platelet Count Data for Problem 9.12

Platelet Counts (x 1000/mm?>)4

Control Dipyridamole
Case Aorta Coronary Sinus Aorta Coronary Sinus

1 390 355 455 445

2 240 190 248 205

3 135 125 150 145

4 305 268 285 290

5 255 195 230 220

6 283 307 291 312

7 435 350 457 374

8 290 250 301 284
Mean 292 255 302 284
+SEM 32 29 38 34

Source: Data from Mehta et al. [1981].

Problems 9.23 to 9.29 deal with the data in Tables 9.19 and 9.20. Jensen et al. [1980] studied
19 patients with coronary artery disease. Thirteen had a prior myocardial infarction (heart attack);
three had coronary bypass surgery. The patients were evaluated before and after three months
or more on a structured supervised training program.

The cardiac performance was evaluated using radionuclide studies while the patients were at
rest and also exercising with bicycle pedals (while lying supine). Variables measured included
(1) ejection fraction (EF), the fraction of the blood in the left ventricle ejected during a heart
beat, (2) heart rate (HR) at maximum exercise in beats per minute, (3) systolic blood pressure
(SBP) in millimeters of mercury, (4) the rate pressure product (RPP) maximum heart rate times
the maximum systolic blood pressure divided by 100, and (5) the estimated maximum oxygen
consumption in cubic centimeters of oxygen per kilogram of body weight per minute.

9.23

9.24

9.25

9.26

The resting ejection fraction is measured before, X, and after, Y, training. X =0.574,Y =
0.553, [x%] = 0.29886, [y?] = 0.32541, [xy] = 0.23385, and paired r = —0.984. Do
tasks (c), (e), (k-iv), (m), and (p). Is there a change in resting ejection fraction demon-
strated with six months of exercise training? Are the two ejection fractions associated?

The ejection fraction at maximal exercise was measured before, X, and after, Y, training.
X = 0.556,Y = 0.564, [x?] = 0.30284, [y?] = 0.46706, and [xy] = 0.2809. Is there
association (¢ = 0.05) between the two ejection fractions? If yes, do tasks (c), (k-iii),
(1-iii), (p), and (g-ii). Is there a change (¢ = 0.05) between the two ejection fractions?
If yes, find a 95% confidence interval for the average difference.

The maximum systolic blood pressure was measured before, X, and after, Y, training.
X =173.8,Y = 184.2, [x?] = 11,488.5, [y*] = 10, 458.5, [xy] = 7419.5, and paired
t = 2.263. Do tasks (a), (b), (c), (d), (e), (m), (p), and (t). Does the exercise training
produce a change? How much? Can we predict individually the maximum SBP after
training from that before? How much of the variability in maximum SBP after exercise
is accounted for by knowing the value before exercise?

The before, X, and after, Y, rate pressure product give X = 223.0,Y = 245.7, [x%] =
58,476, [y?] = 85, 038, [xy] = 54, 465, and paired t = 2.256 (Table 9.21). Do tasks (c),
(e), (), (g), (h), and (m). Find the large-sample p-value for Kendall’s tau for association.
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Table 9.19 Resting and Maximal Ejection Fraction
Measured by Radionuclide Ventriculography, and
Maximal Heart Rate

Resting EF Maximal EF Maximal HR

Case Pre Post Pre Post Pre Post
1 0.39 048 046 048 110 119
2 0.57 049 0.51 057 120 125
3 0.77  0.63 0.70  0.82 108 105
4 048 0.50 0.51 0.1 85 88
5 0.55 0.46 045 055 107 103
6 0.60  0.50 0.52 054 125 115
7 0.63  0.61 0.75 0.68 170 166
8 0.73  0.61 0.53  0.71 160 142
9 0.70  0.68 0.80 0.79 125 114
10 0.66 0.68 0.54 043 131 150
11 040 031 042 030 135 174
12 048 0.46 048 030 97 94
13 0.63 0.78 0.60  0.75 135 132
14 041 037 041 044 127 162
15 0.75 0.54 0.76  0.57 126 148
16 0.58 0.64 0.62 0.72 102 112
17 0.50 0.58 0.54  0.65 145 140
18 0.71  0.81 0.65 0.60 152 145
19 0.37 0.38 0.32 031 155 170
Mean 0.57 0.55 0.56  0.56 127 132
+SD 0.13  0.13 0.13  0.16 23 26

Table 9.20 Systolic Blood Pressure, Rate Pressure
Product and Estimate VO3 yax before (Pre) and
after (Post) Training

Est. VO, max
Maximal SBP  Maximal RPP (cm?/kg - min)

Case Pre Post Pre Post Pre Post

1 148 156 163 186 24 30
2 180 196 216 245 28 44
3 185 200 200 210 28 28
4 150 148 128 130 34 38
5 150 156 161 161 20 28
6 164 172 205 198 30 36
7 180 210 306 349 64 54
8 182 176 291 250 44 40
9 186 170 233 194 30 28
10 220 230 288 345 30 30
11 188 205 254 357 28 44
12 120 165 116 155 22 20
13 175 160 236 211 20 36
14 190 180 241 292 36 38
15 140 170 176 252 36 44
16 200 230 204 258 28 36
17 215 185 312 259 44 44
18 165 190 251 276 28 34
19 165 200 256 340 44 52
Mean 174 184 223 246 31 37

+SD 25 24 57 69 8 9
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Table 9.21 Blood Pressure Data for Problem 9.26

Maximal SBP

Pre Post
X Y Y Y —Y  Normal Deviate

163 186 189.90 —3.80 —0.08
216 245 239.16 ? ?
200 210 22426 —14.26 —-0.32
128 130 157.20 —=27.20 —-0.61
161 161 ? —26.94 ?
205 198 22892 —-30.92 —0.69
306 349 322.99 26.01 ?
291 250 309.02 —59.02 —1.31
233 194 255.00 —61.00 —1.36
288 345 306.22 38.77 0.86
254 357 ? ? ?
116 155 146.02 8.98 0.20
236 211 257.79  —46.79 —1.04
241 292 262.45 29.55 0.66
176 252 201.91 50.09 1.12
204 258 227.99 30.01 0.67
312 259 328.58 —69.58 —1.55
251 276 271.76 4.24 0.09
256 340 276.42 63.58 1.42

9.27 The nﬁlximum oxygen consumption, VO, max, is measured before, X, and after, Y.
Here X = 32.53,Y = 37.05, [x2] = 2030.7, [y?] = 1362.9, [xy] = 54465, and paired
t = 2.811. Do tasks (c), (k-ii), (m), (n), at x = 30, 35, and 40, (p), (g-ii), and (t).

9.28 The ejection fractions at rest, X, and at maximum exercise, Y, before training is used in
this problem. X = 0.574,Y = 0.556, [x?] = 0.29886, [y%] = 0.30284, [xy] = 0.24379,
and paired t = —0.980. Analyze these data, including a scatter diagram, and write a
short paragraph describing the change and/or association seen.

9.29 The ejection fractions at rest, X, and after exercises, Y, for the subjects after training:
(1) are associated, (2) do not change on the average, (3) explain about 52% of the
variability in each other. Justify statements (1)-(3). X = 0.553,Y = 0.564, [x%] =
0.32541, [y?] = 0.4671, [xy] = 0.28014, and paired r = 0.424.

Problems 9.30 to 9.33 refer to the following study. Boucher et al. [1981] studied patients
before and after surgery for isolated aortic regurgitation and isolated mitral regurgitation. The
aortic valve is in the heart valve between the left ventricle, where blood is pumped from the heart,
and the aorta, the large artery beginning the arterial system. When the valve is not functioning
and closing properly, some of the blood pumped from the heart returns (or regurgitates) as the
heart relaxes before its next pumping action. To compensate for this, the heart volume increases
to pump more blood out (since some of it returns). To correct for this, open heart surgery
is performed and an artificial valve is sewn into the heart. Data on 20 patients with aortic
regurgitation and corrective surgery are given in Tables 9.22 and 9.23.

“NYHA Class” measures the amount of impairment in daily activities that the patient suffers:
I is least impairment, II is mild impairment, III is moderate impairment, and IV is severe
impairment; HR, heart rate; SBP, the systolic (pumping or maximum) blood pressure; EF, the
ejection fraction, the fraction of blood in the left ventricle pumped out during a beat; EDVI,
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Table 9.22 Preoperative Data for 20 Patients with Aortic Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI
Case  and Gender  Class  (beats/min) (mmHG) EF  (mL/m?) (mL/m?) (mL/m?)
1 33M I 75 150 0.54 225 121 104
2 36M I 110 150 0.64 82 52 30
3 37M I 75 140 0.50 267 134 134
4 38M I 70 150 0.41 225 92 133
5 38M I 68 215 0.53 186 99 87
6 54M I 76 160 0.56 116 65 51
7 56F I 60 140 0.81 79 64 15
8 70M I 70 160 0.67 85 37 28
9 22M Il 68 140 0.57 132 95 57
10 28F Il 75 180 0.58 141 82 59
11 40M Il 65 110 0.62 190 118 72
12 48F Il 70 120 0.36 232 84 148
13 42F 111 70 120 0.64 142 91 51
14 57M 11 85 150 0.60 179 107 30
15 61M 11 66 140 0.56 214 120 94
16 64M 11 54 150 0.60 145 87 58
17 61M v 110 126 0.55 83 46 37
18 62M v 75 132 0.56 119 67 52
19 64M v 80 120 0.39 226 88 138
20 65M v 80 110 0.29 195 57 138
Mean 49 75 143 0.55 162 85 77
+SD 14 14 25 0.12 60 26 43
Table 9.23 Postoperative Data for 20 Patients with Aortic Regurgitation
Age (yr) NYHA HR SBP EDVI SVI ESVI
Case  and Gender  Class  (beats/min) (mmHG) EF  (mL/m?) (mL/m?) (mL/m?)
1 33M I 80 115 0.38 113 43 43
2 36M I 100 125 0.58 56 32 24
3 37M I 100 130 0.27 93 25 68
4 38M I 85 110 0.17 160 27 133
5 38M I 94 130 0.47 111 52 59
6 54M I 74 110 0.50 83 42 42
7 56F I 85 120 0.56 59 33 26
8 70M I 85 130 0.59 68 40 28
9 22M Il 120 136 0.33 119 39 80
10 28F I 92 160 0.32 71 23 48
11 40M Il 85 110 0.47 70 33 37
12 48F I 84 120 0.24 149 36 113
13 42F 11 84 100 0.63 55 35 20
14 57M 11 86 135 0.33 91 72 61
15 61M 11 100 138 0.34 92 31 61
16 64M 11 60 130 0.30 118 35 83
17 61M v 88 130 0.62 63 39 24
18 62M v 75 126 0.29 100 29 71
19 64M v 78 110 0.26 198 52 147
20 65M v 75 90 0.26 176 46 130
Mean 49 87 123 0.40 102 38 65
+SD 14 13 15 0.14 41 11 39
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Table 9.24 Preoperative Data for 20 Patients with Mitral Regurgitation

351

Age (yr) NYHA HR SBP EDVI SVI ESVI
Case and Gender Class (beats/min) (mmHG) EF (mL/m?) (mL/m?) (mL/m?)
1 23M 11 75 95 0.69 71 49 22
2 31IM I 70 150 0.77 184 142 42
3 40F 1 86 90 0.68 84 57 30
4 47TM 1 120 150 0.51 135 67 66
5 54F 11 85 120 0.73 127 93 34
6 5T™M 11 80 130 0.74 149 110 39
7 61M II 55 120 0.67 196 131 65
8 37M I 72 120 0.70 214 150 64
9 52M I 108 105 0.66 126 83 43
10 52F I 80 115 0.52 167 70 97
11 52M I 80 105 0.76 130 99 31
12 56M I 80 115 0.60 136 82 54
13 58F I 65 110 0.62 146 91 56
14 59M 1 102 90 0.63 82 52 30
15 66M I 60 100 0.62 76 47 29
16 67F I 75 140 0.71 94 67 27
17 71F I 88 140 0.65 111 72 39
18 55M v 80 125 0.66 136 90 46
19 59F v 115 130 0.72 96 69 27
20 60M v 64 140 0.60 161 97 64
Mean 53 81 121 0.66 131 86 45
+SD 12 17 17 0.09 40 30 19
Table 9.25 Postoperative Data for 20 Patients with Mitral Regurgitation
Age (yr) NYHA HR SBP EDVI SVI ESVI
Case  and Gender Class (beats/min)  (mmHG) EF (mL/m?)  (mL/m?)  (mL/m?)
1 23M 1I 90 100 0.60 67 40 27
2 31M I 95 110 0.64 64 41 23
3 40F I 80 110 0.77 59 45 14
4 47M I 90 120 0.36 96 35 61
5 54F I 100 110 0.41 59 24 35
6 5TM I 75 115 0.54 71 38 33
7 61M I 140 120 0.41 165 68 97
8 37M 11T 95 120 0.25 84 21 63
9 52M 11 100 125 0.43 67 29 38
10 52F il 90 90 0.44 124 55 69
11 52M 11T 98 116 0.55 68 37 31
12 56M 11T 61 108 0.56 112 63 49
13 58F 111 88 120 0.50 76 38 38
14 59M 11T 100 100 0.48 40 19 21
15 66M 11T 85 124 0.51 31 16 15
16 67F 11 84 120 0.39 81 32 49
17 71F 11T 100 100 0.44 76 33 43
18 55M v 108 124 0.43 63 27 36
19 59F v 100 110 0.49 62 30 32
20 60M v 90 110 0.36 93 34 60
Mean 53 93 113 0.48 78 36 42
+SD 12 15 9 0.11 30 14 21
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the volume of the left ventricle after the heart relaxes (adjusted for physical size, to divide by
an estimate of the patient’s body surface area (BSA); SVI, the volume of the left ventricle after
the blood is pumped out, adjusted for BSA; ESVI, the volume of the left ventricle pumped
out during one cycle, adjusted for BSA; ESVI = EDVI — SVI. These values were measured
before and after valve replacement surgery. The patients in this study were selected to have left
ventricular volume overload; that is, expanded EDVL.

Another group of 20 patients with mitral valve disease and left ventricular volume overload
were studied. The mitral valve is the valve allowing oxygenated blood from the lungs into the left
ventricle for pumping to the body. Mitral regurgitation allows blood to be pumped “backward”
and to be mixed with “new” blood coming from the lungs. The data for these patients are given
in Tables 9.24 and 9.25.

9.30 (a) The preoperative, X, and postoperative, Y, ejection fraction in the patients with
aortic valve replacement gave X = 0.549,Y = 0.396, [x2] = 0.26158, [y?] =
0.39170, [xy] = 0.21981, and paired + = —6.474. Do tasks (a), (c), (d), (e), (m),
(p), and (t). Is there a change? Are ejection fractions before and after surgery

related?

(b) The mitral valve cases had X = 0.662,Y = 0.478, [x*] = 0.09592, [y?] =
0.24812, [xy] = 0.04458, and paired t = —7.105. Perform the same tasks as
in part (a).

(c) When the emphasis is on the change, rather than possible association and predictive
value, a figure like Figure 9.20 may be preferred to a scatter diagram. Plot the scatter
diagram for the aortic regurgitation data and comment on the relative merits of the
two graphics.

Aortic regurgitation Mitral regurgitation

Ejection Fraction
Reduced 0.5 Normal

T T T T
Pre-OP Post-OP  Pre-OP Post-OP

Figure 9.20 Figure for Problem 9.30(c). Individual values for ejection fraction before (pre-OP) and early
after (post-OP) surgery are plotted; preoperatively, only four patients with aortic regurgitation had an ejection
fraction below normal. After operation, 13 patients with aortic regurgitation and 9 with mitral regurgitation
had an ejection fraction below normal. The lower limit of normal (0.50) is represented by a dashed line.
(From Boucher et al. [1981].).
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9.31

9.32

9.33

Table 9.26 Data for Problem 9.31

X Y Y Residuals  Normal Deviate
22 67 51.26 15.74 0.75
42 64 74.18 —10.18 —0.48
30 59 60.42 —1.42 —0.06
66 96 101.68 —5.68 -0.27
34 59 65.01 —6.01 —0.28
39 71 70.74 0.26 0.01
65 165 ? ? ?
64 84 99.39 15.29 —0.73
43 67 75.32 ? —0.39
97 124 137.20 —13.20 ?
31 68 61.57 ? ?
54 112 87.93 24.07 1.14
56 76 ? ? —0.67
30 40 ? —20.42 -0.97
29 31 ? ? ?
27 81 56.99 24.01 1.14
39 76 70.74 5.26 0.25
46 63 78.76 —15.76 -0.75
27 62 56.99 5.01 0.24
64 93 99.39 —6.39 —0.30

(a) For the mitral valve cases, we use the end systolic volume index (ESVI) before
surgery to try to predict the end diastolic volume index (EDVI) after surgery.
X = 45.25,Y = 77.9, [x?] = 6753.8, [y?] = 16, 885.5, and [xy] = 7739.5. Do
tasks (c), (d), (e), (f), (h), (j), (k-iv), (m), and (p). Data are given in Table 9.26.
The residual plot and normal probability plot are given in Figures 9.21 and 9.22.

(b) If subject 7 is omitted, X = 44.2,Y = 73.3, [x2] = 6343.2, [y?] = 8900.1, and
[xy] = 5928.7. Do tasks (c), (m), and (p). What are the changes in tasks (a), (b),
and (r) from part (a)?

(¢) For the aortic cases; X =758,Y = 102.3, [x2] = 35,307.2, [yz] = 32,513.8,
[xy] =27, 076. Do tasks (c), (k-iv), (p), and (g-ii).

We want to investigate the predictive value of the preoperative ESVI to predict the postop-
erative ejection fraction, EF. For each part, do tasks (a), (c), (d), (k-i), (k-iv), (m), and (p).

(a) The aortic cases have X = 75.8,Y = 0.396, [x2] = 35307.2, [y?] = 0.39170, and

[xy] = 84.338.
(b) The mitral cases have X = 45.3,Y = 0.478, [x%] = 6753.8, [yz] = 0.24812, and
[xy] = —18.610.

Investigate the relationship between the preoperative heart rate and the postoperative
heart rate. If there are outliers, eliminate (their) effect. Specifically address these ques-
tions: (1) Is there an overall change from preop to postop HR? (2) Are the preop and
postop HRs associated? If there is an association, summarize it (Tables 9.27 and 9.28).

(@) For the aortic cases, > X = 1502, Y = 17.30, Y X? = 116,446, v? =
152, 662, and ZXY = 130, 556. Data are given in Table 9.27.

(b) For the mitral cases: Y X = 1640, Y = 1869, X = 140,338,) Y2 =
179,089, and ) XY = 152, 860. Data are given in Table 9.28.



354 ASSOCIATION AND PREDICTION: LINEAR MODELS WITH ONE PREDICTOR VARIABLE

o
(=3
©
o |
<
o o
<> o |
] N
> o
o © o
o ° o
o 00
&
o ° o °
o
& o
o
T T T T T
60 80 100 120 140
N
y
Figure 9.21 Residual plot for Problem 9.31(a).
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Figure 9.22 Normal probability plot for Problem 9.31(a).

9.34 The Web appendix to this chapter contains county-by-county electoral data for the state
of Florida for the 2000 elections for president and for governor of Florida. The major
Democratic and Republican parties each had a candidate for both positions, and there
were two minor party candidates for president and one for governor. In Palm Beach
County a poorly designed ballot was used, and it was suggested that this led to some
voters who intended to vote for Gore in fact voting for Buchanan.
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Table 9.27 Data for Problem 9.33(a)

X Y Y Residuals  Normal Deviate

75 80 86.48 —6.48 —0.51
110 100 92.56 7.44 0.59

75 100 86.48 13.52 1.06
70 85 85.61 0.61 —0.04
68 94 8527 8.73 0.69
76 74 86.66 —12.66 —1.00
60 85 83.88 1.12 0.08
70 85 8561 0.61 —0.04
68 120 8527 34.73 2.73
75 92 8648 5.52 0.43
65 85 84.75 0.25 0.02
70 84  85.61 —1.61 —0.13
70 84  85.61 —1.61 —0.13
85 86  88.22 —-2.22 -0.17
66 100 84.92 15.08 1.19
54 60 82.84 —22.84 —1.80

110 88 92.56 —4.56 0.36

75 75  86.48 —11.48 —0.90
80 78  87.35 —-9.35 —0.74
80 75 87.35 —12.35 —0.97

Table 9.28 Data for Problem 9.33(b)

X Y Y Residuals  Normal Deviate
75 90 9393 —-3.93 —-0.25
70 95 9427 0.73 0.04
86 80 93.18 —13.18 —0.84

120 90 90.87 -0.87 —0.05

85 100 9325 6.75 0.43
80 75  93.59 —18.59 —1.19
55 140 9528 44.72 2.86
72 95 94.13 0.87 0.05

108 100 91.68 8.32 0.53

80 90 93.59 -3.59 —-0.23
80 98 93.59 441 0.28
80 61 9395 —-32.59 —2.08
65 88  94.61 —6.61 0.42

102 100  92.09 791 0.51

60 85 9494 —-9.94 —0.64
75 84 9393 -9.93 —0.63
88 100 93.04 6.96 0.44
80 108 93.59 14.41 0.92

115 100 91.21 8.79 0.56

64 90 94.67 —4.67 —0.30

355

(a) Using simple linear regression and graphs, examine whether the data support this

claim.

(b) Read the analyses linked from the Web appendix and critically evaluate their claims.
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CHAPTER 10

Analysis of Variance

10.1 INTRODUCTION

The phrase analysis of variance was coined by Fisher [1950], who defined it as “the separation
of variance ascribable to one group of causes from the variance ascribable to other groups.”
Another way of stating this is to consider it as a partitioning of total variance into component
parts. One illustration of this procedure is contained in Chapter 9, where the total variability
of the dependent variable was partitioned into two components: one associated with regression
and the other associated with (residual) variation about the regression line. Analysis of variance
models are a special class of linear models.

Definition 10.1. An analysis of variance model is a linear regression model in which the
predictor variables are classification variables. The categories of a variable are called the levels
of the variable.

The meaning of this definition will become clearer as you read this chapter.

The topics of analysis of variance and design of experiments are closely related, which has
been evident in earlier chapters. For example, use of a paired 7-test implies that the data are
paired and thus may indicate a certain type of experiment. Similarly, a partitioning of total
variation in a regression situation implies that two variables measured are linearly related. A
general principle is involved: The analysis of a set of data should be appropriate for the design.
We indicate the close relationship between design and analysis throughout this chapter.

The chapter begins with the one-way analysis of variance. Total variability is partitioned
into a variance between groups and a variance within groups. The groups could consist of
different treatments or different classifications. In Section 10.2 we develop the construction of
an analysis of variance from group means and standard deviations, and consider the analysis
of variance using ranks. In Section 10.3 we discuss the two-way analysis of variance: A spe-
cial two-way analysis involving randomized blocks and the corresponding rank analysis are
discussed, and then two kinds of classification variables (random and fixed) are covered. Spe-
cial but common designs are presented in Sections 10.4 and 10.5. Finally, in Section 10.6 we
discuss the testing of the assumptions of the analysis of variance, including ways of trans-
forming the data to make the assumptions valid. Notes and specialized topics conclude our
discussion.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright © 2004 John Wiley & Sons, Inc.
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A few comments about notation and computations: The formulas for the analysis of variance
look formidable but follow a logical pattern. The following rules are followed or held (we
remind you on occasion):

1. Indices for groups follow a mnemonic pattern. For example, the subscript i runs from
1,...,1; the subscript j from 1,...,J;k from 1, ..., K, and so on.

2. Sums of values of the random variables are indicated by replacing the subscript by a dot.
For example,

1 K
Y,’.:ZY,']', Y-ijZYijk, Y-j':ZZYijk
i=1 =

j=1 i=1 k=1

3. It is expensive to print subscripts and superscripts on Y _ signs. A very simple rule is that
summations are always over the given subscripts. For example,

J K

Zy,:zljm, ZYijk=XI:ZZYijk

i=1 i=1 j=1k=1

We may write expressions initially with the subscripts and superscripts, but after the patterns
have been established, we omit them. See Table 10.6 for an example.

4. The symbol n;; denotes the number of Y;;; observations, and so on. The total sample size
is denoted by n rather than n__; it will be obvious from the context that the total sample size is
meant.

5. The means are indicated by Y; e Y. j-» and so on. The number of observations associated
with a mean is always n with the same subscript (e.g., Yij. =Y;j./nij or Y.j. =Y../n.;).

6. The analysis of variance is an analysis of variability associated with a single obser-
vation. This implies that sums of squares of subtotals or totals must always be divided by
the number of observations making up the total; for example, ZYiz. /n; if Y;. is the sum
of n; observations. The rule is then that the divisor is always the number of observations
represented by the dotted subscripts. Another example: Y2 /n.., since Y.. is the sum of n..
observations.

7. Similar to rules 5 and 6, a sum of squares involving means always have as weighting
factor the number of observations on which the mean is based. For example,

1

Zni(?i. —?..)2

i=I

because the mean Y;. is based on n; observations.

8. The ANovAa models are best expressed in terms of means and deviations from means.
The computations are best carried out in terms of totals to avoid unnecessary calculations and
prevent rounding error. (This is similar to the definition and calculation of the sample standard
deviation.) For example,

an‘(?i. —?..)2 = .

See Problem 10.25.
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10.2 ONE-WAY ANALYSIS OF VARIANCE

10.2.1 Motivating Example

Example 10.1. To motivate the one-way analysis of variance, we return to the data of Zelazo
et al. [1972], which deal with the age at which children first walked (see Chapter 5). The
experiment involved reinforcement of the walking and placing reflexes in newborns. The walking
and placing reflexes disappear by about 8 weeks of age. In this experiment, newborn children
were randomly assigned to one of four treatment groups: active exercise; passive exercise; no
exercise; or an 8-week control group. Infants in the active-exercise group received walking
and placing stimulation four times a day for eight weeks, infants in the passive-exercise group
received an equal amount of gross motor stimulation, infants in the no-exercise group were
tested along with the first two groups at weekly intervals, and the eight-week control group
consisted of infants observed only at 8§ weeks of age to control for possible effects of repeated
examination. The response variable was age (in months) at which the infant first walked. The
data are presented in Table 10.1. For purposes of this example we have added the mean of the
fourth group to that group to make the sample sizes equal; this will not change the mean of the
fourth group. Equal sample sizes are not required for the one-way analysis of variance.

Assume that the age at which an infant first walks alone is normally distributed with variance
o2. For the four treatment groups, let the means be 1, (o, u3, and p4. Since o2 is unknown,
we could calculate the sample variance for each of the four groups and come up with a pooled
estimate, sg,, of o2, For this example, since the sample sizes per group are assumed to be
equal, this is

1
s,z7 = 1(2.0938 +3.5938 + 2.3104 + 0.7400) = 2.1845
But we have one more estimate of o2. If the four treatments do not differ (Hy : u1 = o =
w3 = p4 = ), the sample means are normally distributed with variance o2/6. The quantity
02/6 can be estimated by s%, the variance of the sample means. For this example it is

s% = 0.87439

Table 10.1 Distribution of Ages (in Months) at which Infants
First Walked Alone

Active Passive ~ No-Exercise Eight-Week

Group Group Group Control Group
9.00 11.00 11.50 13.25
9.50 10.00 12.00 11.50
9.75 10.00 9.00 12.00
10.00 11.75 11.50 13.50
13.00 10.50 13.25 11.50
9.50 15.00 13.00 12.35¢
Mean 10.125 11.375 11.708 12.350
Variance 2.0938 3.5938 2.3104 0.7400
Y. 60.75 68.25 70.25 74.10

Source: Data from Zelazo et al. [1972].

“This observation is missing from the original data set. For purposes of this
illustration, it is estimated by the sample mean. See the text for further dis-
cussion.
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Hence, 63% = 5.2463 is also an estimate of o2. Under the null hypothesis, 6s%/s§ will

follow an F-distribution. How many degrees of freedom are involved? The quantity s% has
three degrees of freedom associated with it (since it is a variance based on four observations).
The quantity 55 has 20 degrees of freedom (since each of its four component variances has five
degrees of freedom). So the quantity 6s%/ sg under the null hypothesis has an F-distribution with
3 and 20 degrees of freedom. What if the null hypothesis is not true (i.e., the p1, uo, #3, and pa
are not all equal)? It can be shown that 63% then estimates o2+ positive constant, so that the

ratio 653/s‘,2, tends to be larger than 1. The usual hypothesis-testing approach is to reject the
null hypothesis if the ratio is “too large,” with the critical value selected from an F'-table. The
analysis is summarized in an analysis of variance table (ANOVA), as in Table 10.2.

The variances 6s3/s[2) and slz, are called mean squares for reasons to be explained later. It is
clear that the first variance measures the variability between groups, and the second measures
the variability within groups. The F-ratio of 2.40 is referred to an F-table. The critical value
at the 0.05 level is F320,0.95 = 3.10, the observed value 2.40 is smaller, and we do not reject
the null hypothesis at the 0.05 level. The data are displayed in Figure 10.1. From the graph it
can be seen that the active group had the lowest mean value. The nonsignificance of the F-test
suggests that the active group mean is not significantly lower than that of the other three groups.

Table 10.2 Simplified ANova Table of Data of Table 10.1

Source of
Variation d.f. MS F-Ratio
657 52463
Between groups 3 6s2=52463 —L ="" =240
Y 52 2.1845
Within groups 20 sﬁ =2.1845
16
@
= -
o
P
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2
= 14t
g L]
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Figure 10.1 Distribution of ages at which infants first walked alone. (Data from Zelazo et al. [1972]; see
Table 10.1.)
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10.2.2 Using the Normal Distribution Model
Basic Approach

The one-way analysis of variance is a generalization of the z-test. As in the motivating example
above, it can be used to examine the age at which groups of infants first walk alone, each group
receiving a different treatment; or we may compare patient costs (in dollars per day) in a sample
of hospitals from a metropolitan area. (There is a subtle distinction between the two examples;
see Section 10.3.4 for a further discussion.)

Definition 10.2. An analysis of variance of observations, each of which belongs to one of
I disjoint groups, is a one-way analysis of variance of I groups.

Suppose that samples are taken from / normal populations that differ at most in their means;
the observations can be modeled by

Yij = ui +¢€ij, i=1,...,1, j=1...,m (D

The mean for normal population i is u;; we assume that there are n; observations from this
population. Also, by assumption, the ¢;; are independent N (0, 0%) variables. In words: Y;;
denotes the jth sample from a population with mean y; and variance o'2. If I = 2, you can see
that this is precisely the model for the two-sample -test.

The only difference between the situation now and that of Section 10.2.1 is that we allow the
number of observations to vary from group to group. The within-group estimate of the variance

o2 now becomes a weighted sum of sample variances. Let 552 be the sample variance from group
i, where i = 1,..., I. The within-group estimate o2 is
Y i — st Y — s}
Smi—1)  n—1

where n = ny + np + - - - + ny is the total number of observations.
Under the null hypothesis Hyp : @1 = pp = --- = uj = W, the variability among the group
of sample means also estimates o2. We will show below that the proper expression is

Zl’l,‘(?,‘. —-Y.)?2
I1—-1
where
nj
1
i~ =
=

is the grand mean. These quantities can again be arranged in an ANOVA table, as displayed in
Table 10.3. Under the null hypothesis, Hy : u; = o = --- = uj = W, the quantity A/B in
Table 10.3 follows an F-distribution with (/ — 1) and (n — I') degrees of freedom.

We now reanalyze our first example in Section 10.2.1, deleting the sixth observation, 12.35,
in the eight-week control group. The means and variances for the four groups are now:
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Table 10.3 One-Way aNova Table for I Groups and n;

Observations per Group (i =1,...,1)
Source of Variation d.f. MS F-Ratio
(Y —Y.)2
Between groups I-1 A= Zﬂl(llil) A/B
o (n; — 1)s}
Within groups n—I B=) =
n—
Table 10.4 ANovA of Data from Example 10.1,
Omitting the Last Observation
Source of Variation d.f. MS F-Ratio
Between groups 3 4.9253 2.14
Within groups 19 2.2994
Active Passive ~ No Exercise Control Overall

Mean (Y;.) 10.125 11.375 11.708 12.350  11.348
Variance (51‘2) 2.0938 3.5938 2.3104 0.925 —
n; 6 6 6 5 23

Therefore,

Zn,-(?i. —Y.)% = 6(10.125 — 11.348)% + 6(11.375 — 11.348)?

+6(11.708 — 11.348)% 4 5(12.350 — 11.348)>
= 14.776

The between-group mean square is 14.776/(4 — 1) = 4.9253. The within-group mean square is

1
m[5(2.0938) 4+ 5(3.5938) + 5(2.3104) 4+ 4(0.925)] = 2.299%4

The ANOvA table is displayed in Table 10.4.
The critical value F3 19,0.95 = 3.13, so again, the four groups do not differ significantly.

Linear Model Approach

In this section we approach the analysis of variance using linear models. The model Y;; = u;+e€;;
is usually written as

YVij =p+a + €5, i=1,...,1, j=1,...,n 2

The quantity p is defined as
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where n = ) n; (the total number of observations). The quantity ; is defined as o; = p — ;.
This implies that

1 n;
DD =) nio; =0 3)

i=1 j=1
Definition 10.3. The quantity o; = p — ; is the main effect of the ith population.
Comments:

1. The symbol o with a subscript will denote an element of the analysis of variance model,
not the type I error. The context will make it clear which meaning is intended.

2. The equation Y n;e; = 0 is a constraint. It implies that fixing any (I — 1) of the main
effects determines the remaining value.

If we hypothesize that the / populations have the same means,
Hy:pui=pu2=---=pur=pn
then an equivalent statement is
Hy:0j=apy=---=a;=0 or Hy:o; =0, i=1,...,1

How are the quantities u;,i =1,...,1 and o2 to be estimated from the data? (Or, equiva-
lently, u,a;,i =1, ..., 1 and ¢2.) Basically, we follow the same strategy as in Section 10.2.1.
The variances within the I groups are pooled to provide an estimate of o2, and the variability
between groups provides a second estimate under the null hypothesis. The data can be displayed
as shown in Table 10.5. For this set of data, a partitioning can be set up that mimics the model
defined by equation (2):

Model :  Y;; = u+o; +€j
_ i=1,....I, j=1,...,n (@)
Data : Yij=Y..+a +ej
where ¢; = Y;. — Y.. and e;; = IGj—?i. fori =1,...,1land j = 1,...,n;. It is easy to

verify that the condition ) n;e; = 0 is mimicked by > n;a; = 0. Each data point is partitioned
into three component estimates:

Yij = Y.+ =Y.+ Yij — Y;.) = mean + ith main effect + error

Table 10.5 Pooled Variances of I Groups

Sample
1 2 3 1
Y11 Y1 Y31 Yn
Yo Yo Y3 Y
Ylnl Yan Y3n3 Ylnl
Observations ni ny n3 S ny
Means Y. Y. Ys. e Y.

Totals Y. Ys. Ys. s Y;.
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The expression on the right side of Y;; is an algebraic identity. It is a remarkable property of
this partitioning that the sum of squares of the Y;; is equal to the sum of the three sums of
squares of the elements on the right side:

I n; 1 n; I n; I n;
S IIED3) SEED ) SIS 3 SR

i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1

1 I n;
R R T SALE B R AR AT (5)
i=1

i=1 j=I

and the degrees of freedom can also be partitioned: n = 1+ (I — 1)+ (n —I). You will recognize
the terms on the right side as the ingredients needed for setting up the analysis of variance table
as discussed in the preceding section. It should also be noted that the quantities on the right side
are random variables (since they are based on statistics). It can be shown that their expected
values are

E (Zn,-(?,-. - ?..)2) =Y nia? + (I - Do? (6)

and

1 n;
E[Y > (vij—Yi) | =@ —Do® (7)

i=1 j=I

If the null hypothesis Hy : ) =ap =--- =ay =0is true (i.e., w1 = o = -+ =y = W),
then Zn,»oci2 = 0, and both of the terms above provide an estimate of o2 [after division by
(I — 1) and (n — I), respectively]. This layout and analysis is summarized in Table 10.6.

The quantities making up the component parts of equation (5) are called sums of squares
(SS). “Grand mean” is usually omitted; it is used to test the null hypothesis that & = 0. This

is rarely of very much interest, particularly if the null hypothesis Hy : 1 = up = --- = g is
rejected (but see Example 10.7). “Between groups” is used to test the latter null hypothesis, or
the equivalent hypothesis, Hy: o) =ap =--- = a7 = 0.

Before returning to Example 10.1, we give a few computational notes.

Computational Notes

As in the case of calculating standard deviations, the computations usually are not based on
the means but rather, on the group totals. Only three quantities have to be calculated for the
one-way ANOVA. Let

n;
Y. = Z Y;; = total in the ith treatment group ®)
j=1

and

Y. = Z Y;. = grand total ©)
The three quantities that have to be calculated are
1 n;

2 2 Loy} Y: r?
S reyyn yrept 2
i=

i=1 j=1
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where n = ) n; = total observations. It is easy to establish the following relationships:
Y2
SS, = — 10
w= (10)
Y2 y2
SSy = - = (11)
n; n

2
sso= Y313y ok 1

The subscripts are omitted.
We have an algebraic identity in y_ > Yl% = SS,,+SSy+SSe. Defining SStorar 8 SSrorar =
>y Yl% —SS,., we get SS;ora. = SSq+SSe and degrees of freedom (n—1) = (i — D)+ (n—1).
This formulation is a simplified version of equation (5). Note that the original data are needed
only for > Yl%.; all other sums of squares can be calculated from group or overall totals.
Continuing Example 10.1, omitting again the last observation (12.35):

D ¥i =9.00"+9.50° + - + 11.50” = 3020.2500

Y2 60.75%  6825% 70252  61.752
Zin _ = 2976.5604
Z n; 6 + 6 + 6 + 5
Y2 261.00?
— = =2961.7826
n 23
The ANOVA table omitting rows for SS;, and SStora; becomes
Source of Variation d.f. SS MS F-Ratio
Between groups 3 147778 49259 214

Within groups 19  43.6896 2.2995

The numbers in this table are not subject to rounding error and differ slightly from those in
Table 10.4.

Estimates of the components of the expected mean squares of Table 10.6 can now be obtained.
The estimate of o2 is 62 = 2.2995, and the estimate of Zn[ocf/(l —1)is

> nia?

71 = 4.9259 — 2.2995 = 2.6264

How is this quantity to be interpreted in view of the nonrejection of the null hypothesis?
Theoretically, the quantity can never be less than zero (all the terms are positive). The best
interpretation looks back to MS,, which is a random variable which (under the null hypothesis)
estimates o', Under the null hypothesis, MS,, and MS, both estimate o2, and > n[aiz/(l -1)
is zero.

10.2.3 One-Way anova from Group Means and Standard Deviation

In many research papers, the raw data are not presented but rather, the means and standard
deviations (or variances) for each of the, say, / treatment groups under consideration. It is
instructive to construct an analysis of variance from these data and see how the assumption
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of the equality of the population variances for each of the groups enters in. Advantages of
constructing the ANOVA table are:

1. Pooling the sample standard deviations (variances) of the groups produces a more precise
estimate of the population standard deviation. This becomes very important if the sample
sizes are small.

2. A simultaneous comparison of all group means can be made by means of the F-test
rather than by a series of two-sample 7-tests. The analysis can be modeled on the layout
in Table 10.3.

Suppose that for each of / groups the following quantities are available:

Group ‘ Sample Size ‘ Sample Mean ‘ Sample Variance

i ‘ n; ‘ Y,'. ‘ Siz

The quantities n = Y n;,Y;. = n;Y;., and Y.. = 3 ¥;. can be calculated. The “within
groups” SS is the quantity B in Table 10.3 times n — I, and the “between groups” SS can be
calculated as

Y2 y?
SSy =y L=

n; n

Example 10.2. Barboriak et al. [1972] studied risk factors in patients undergoing coronary
bypass surgery for coronary artery disease. The authors looked for an association between
cholesterol level (a putative risk factor) and the number of diseased blood vessels. The data are:

Diseased Sample Mean Cholesterol Standard

Vessels (i)  Size (n;) Level (?i,) Deviation (s; )
1 29 260 56.0
2 49 289 87.5
3 76 295 72.4

Using equations (8)—(12), we get n = 29 +49 476 = 154,

Yi. =Y. = 29(260) = 7540, Y3. = n3Y3. = 76(295) = 22,420
Yo. = ny Y. = 49(289) = 14,161, Y. = Zni?,-. = Z Y;. =44, 121

75402 N 14,1612 N 22,4202 44,1212
29 49 76 154
12,666,829.0 — 12,640,666.5 = 26,162.5

SSe =Y (n; — 1)s7 =28 x 56.0° + 48 x 87.5% + 75 x 72.4% = 848, 440

SSy =

The ANova table (Table 10.7) can now be constructed. (There is no need to calculate the
total SS.)

The critical value for F at the 0.05 level with 2 and 120 degrees of freedom is 3.07; the
observed F-value does not exceed this critical value, and the conclusion is that the average
cholesterol levels do not differ significantly.
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Table 10.7 ANova of Data of Example 10.2

Source d.f. SS MS F-Ratio

Main effects (disease status) 2 26,162.50 13,081.2 2.33
Residual (error) 151  848,440.0 5,618.5 —

10.2.4 One-Way anova Using Ranks

In this section the rank procedures discussed in Chapter 8 are extended to the one-way analysis
of variance. For three or more groups, Kruskal and Wallis [1952] have given a one-way ANOVA
based on ranks. The model is

Yij = wi + €ij, i=1,...,1, j=1,...,m

The only assumption about the ¢;; is that they are independently and identically distributed, not
necessarily normal. It is assumed that there are no ties among the observations. For a small
number of ties in the data, the average of the ranks for the tied observations is usually assigned
(see Note 10.1). The test procedure will be conservative in the presence of ties (i.e., the p-value
will be smaller when adjustment for ties is made).

The null hypothesis of interest is

Hy:py=pp=--=pur=p

The procedure for obtaining the ranks is similar to that for the two-sample Wilcoxon rank-sum
procedure: The n| 4+ ny + - -- + n; = n observations are ranked without regard to which group
they belong. Let R;; = rank of observation j in group i.

12 ni(Ri. —R.)?
Tkw = n D) (13)

where R;. is the average of the ranks of the observations in group i:

n;
— R;i;
Ri.=)» L
py

1 L

j=

and R.. is the grand mean of the ranks. The value of the mean (R..) mustbe (n+1) /2 (why?)
and this provides a partial check on the arithmetic. Large values of Txw imply that the average
ranks for the group differ, so that the null hypothesis is rejected for large values of this statistic.
If the null hypothesis is true and all the n; become large, the distribution of the statistic Txw
approaches a x2-distribution with I — 1 degrees of freedom. Thus, for large sample sizes, critical
values for Txw can be read from a Xz-table. For small values of n;, say, in the range 2 to 5,
exact critical values have been tabulated (see, e.g., CRC Table X.9 [Beyer, 1968]). Such tables
are available for three or four groups.
An equivalent formula for Txw as defined by equation (13) is

YR/

where R;. is the total of the ranks for the ith group.
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Example 10.3. Chikos et al. [1977] studied errors in the reading of chest x-rays. The opin-
ion of 10 radiologists about the status of the left ventricle of the heart (“normal” vs. “abnormal”)
was compared to data obtained by ventriculography (which consists of the insertion of a catheter
into the left ventricle, injection of a radiopague fluid, and the taking of a series of x-rays). The
ventriculography data were used to classify a subject’s left ventricle as “normal” or “abnor-
mal.” Using this gold standard, the percentage of errors for each radiologist was computed. The
authors were interested in the effect of experience, and for this purpose the radiologists were
classified into one of three groups: senior staff, junior staff, and residents. The data for these
three groups are shown in Table 10.8.

To compute the Kruskal-Wallis statistic Tgw, the data are ranked disregarding groups:

Observation | 7.3 7.4 10.6 133 147 150 20.7 227 230 266

Rank 1 2 3 4 5 6 7 8 9 10

Group 1 1 2 2 3 2 2 3 3 3

The sums and means of the ranks for each group are calculated to be

Ri.=14+2=3, E1.=1.5
Ry =34+4+4+6+7 =20, Ry. =50
R;. =5+84+9+10=32, R; =8.0
[The sum of the ranks is Ry + Ry + R3 = 55 = (10 x 11)/2, providing a partial check of the

ranking procedure.]
Using equation (14), the Txw statistic has a value of

12(32/2 4 20% /4 + 322 /4)
Tew = —3(10+1) =633
kw 10(10 + 1) 10+ 1)

This value can be referred to as a y2-table with two degrees of freedom. The p-value is
0.025 < p < 0.05. The exact p-value can be obtained from, for example, Table X.9 of the
CRC tables [Beyer, 1968]. (This table does not list the critical values of Txw for n; = 2,
ny = 4, n3 = 4; however, the order in which the groups are labeled does not matter, so
that the values ny = 4,n, = 4, and n3 = 2 may be used.) From this table it is seen that
0.011 < p < 0.046, indicating that the chi-square approximation is satisfactory even for these
small sample sizes. The conclusion from both analyses is that among staff levels there are
significant differences in the accuracy of reading left ventricular abnormality from a chest x-ray.

Table 10.8 Data for Three Radiologist Groups

Senior Staff  Junior Staff  Residents

i 1 2 3
n; 2 4 4
Yi; 7.3 13.3 14.7
7.4 10.6 23.0
(Percent error) 15.0 22.7

20.7 26.6
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10.3 TWO-WAY ANALYSIS OF VARIANCE

10.3.1 Using the Normal Distribution Model

In this section we consider data that arise when a response variable can be classified in two ways.
For example, the response variable may be blood pressure and the classification variables type
of drug treatment and gender of the subject. Another example arises from classifying people by
type of health insurance and race; the response variable could be number of physician contacts
per year.

Definition 10.4. An analysis of variance of observations, each of which can be classified
in two ways is called a two-way analysis of variance.

The data are usually displayed in “cells,” with the row categories the values of one classifi-
cation variable and the columns representing values of the second classification variable.
A completely general two-way ANova model with each cell mean any value could be

Yijie = wij + €iji s)

where i = 1,...,1,j = 1,...,J, andk = 1,...,n;;. By assumption, the ¢;j; are iid
N(0, 02): independently and identically distributed N (0, o2). This model could be treated as a
one-way ANOVA with IJ groups with a test of the hypothesis that all u;; are the same, implying
that the classification variables are not related to the response variable. However, if there is a
significant difference among the IJ group means, we want to know whether these differences
can be attributed to:

1. One of the classification variables,
2. Both of the classification variables acting separately (no interaction), or
3. Both of the classification variables acting separately and jointly (interaction).

In many situations involving classification variables, the mean u;; may be modeled as the
sum of two terms, an effect of variable 1 plus an effect of variable 2:

Wij = uj + vy, i=1,...,1, j=1,...,J (16)

Here p;; depends, in an additive fashion, on the ith level of the first variable and the jth level
of the second variable. One problem is that u; and v; are not defined uniquely; for any constant
C,if uf =u; +C and v§ = v; — C, then u;; = uf + v¥. Thus, the values of u; and v; can
be pinned down to within a constant. The constant is specified by convention and is associated
with the experimental setup. Suppose that there are n;; observations at the ith level of variable 1
and the jth level of variable 2. The frequencies of observations can be laid out in a contingency
table as shown in Table 10.9.

The experiment has a total of n.. observations. The notation is identical to that used in a
two-way contingency table layout. (A major difference is that all the frequencies are usually
chosen by the experimenter; we shall return to this point when talking about a balanced ANOvVA
design.) Using the model of equation (16), the value of j;; is defined as

wij =p+ai+B; an

where i = >3 njjpuij/n..,y_ni.a; =0, and ) n.;B; = 0. This is similar to the constraints
put on the one-way ANOVA model; see equations (2) and (10.3), and Problem 10.25(d).

Example 10.4. An experimental setup involves two explanatory variables, each at three
levels. There are 24 observations distributed as shown in Table 10.10. The effects of the first
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Table 10.9 Contingency Table for Variables

Levels of Variable 2

Levels of

Variable 1 1 2 e j e J Total

1 niy onmp e Rl s Ny ni.
5 R (Y M (Y B (¥ na.

i nil M2 e Rj e Rj n;.

1 npy np e npp e R nj.

Total n. n., n.j n.g n..

Table 10.10 Observation Data

Levels of Variable 2

Levels of
Variable 1 1 2 3 Total
1 2 2 2 6
2 3 3 3 9
3 3 3 3 9
Total 8 8 8 24

Table 10.11 Data for Variable Effects

Effects of the Effects of the Second Variable

First Variable Br=1 Br=-3 B3 =2 Total
a; =3 i =24 pp=20 w3=25 p;.=23
a =6 uo1 =27 puxn =23 3 =28 ux =26
az =—8 w3 =13 w3 =9 upi=14 u3 =12
Total na1=21 pur=17 wu3=22 n =20
variable are assumed to be «; = 3, ap = 6, and a3 = —8; the effects of the second variable

are f1 = 1,6, = —3, and B3 = 2. The overall level is u = 20. If the model defined by
equation (17) holds, the cell means pu;; are specified completely as shown in Table 10.11.

For example, ;17 = 20+ 3 4+ 1 = 24 and pu33 = 20 — 8 + 2 = 14. Note that > n;.0; =
6.3+ 9.6+ 9(—8) = 0 and, similarly, ) n.;8; = 0. Note also that y1. =Y nijuij/ > nij =
4 a1 = 20+ 3 = 23; that is, a marginal mean is just the overall mean plus the effect of the
variable associated with that margin. The means are graphed in Figure 10.2. The points have
been joined by dashed lines to make the pattern clear; there need not be any continuity between
the levels. A similar graph could be made with the level of the second variable plotted on the
abscissa and the lines indexed by the levels of the first variable.

Definition 10.5. A two-way ANOvVA model satisfying equation (17) is called an additive
model.



372 ANALYSIS OF VARIANCE

30
et}
PRSPt
- ‘:—"_’ SN
- AN
-
JUPRY AN
P SN
-7 AN MO
20+ 7 S
\\ \\\\
Value N AN
of RN
\\ ‘\\\. v
i AN s
. 17" Level of
N
10 b > . _ Variable 2
Y /=2
O 1 L .
i=1 i=2 i=3

Figure 10.2 Graph of additive ANOvVA model (see Example 10.4).

Some implications of this model are discussed. You will find it helpful to refer to
Example 10.4 and Figure 10.2 in understanding the following:

1. The statement of equation (17) is equivalent to saying that “changing the level of variable
1 while the level of the second variable remains fixed changes the value of the mean by
the same amount regardless of the (fixed) level of the second variable.”

2. Statement 1 holds with variables 1 and 2 interchanged.

3. If the values of ;; (i =1, ..., I) are plotted for the various levels of the second variable,
the curves are parallel (see Figure 10.2).

4. Statement 3 holds with the roles of variables 1 and 2 interchanged.

5. The model defined by equation (17) imposes 1 + (I — 1) + (J — 1) constraints on the 1J
means (;;, leaving (I — 1)(J — 1) degrees of freedom.

We now want to define a nonadditive model, but before doing so, we must introduce one
other concept.

Definition 10.6. A two-way ANOVA has a balanced (orthogonal) design if for every i and j,

That is, the cell frequencies are functions of the product of the marginal totals. The reason this
characteristic is needed is that only for balanced designs can the total variability be partitioned in
an additive fashion. In Section 10.5 we introduce a discussion of unbalanced or nonorthogonal
designs; the topic is treated in terms of multiple regression models in Chapter 11.

Definition 10.7. A balanced two-way ANOVA model with interaction (a nonadditive model)
is defined by

Yijk =p+o; + B +vij + €ijks j=1L...,J (18)
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subject to the following conditions:

1. njj =n;.n.j/n.. for every i and j.
2. Zni.O{,‘ = Zn,ﬂ] =0.
3. Zni'yij = 0 for all j = 1,... ,J,Zn.j)/l‘j =0foralli = 1,... ,I.

4. The €;ji are iid N (0, o2). This assumption implies homogeneity of variances among the
1J cells.

If the y;; are zero, the model is equivalent to the one defined by equation (17), there is no
interaction, and the model is additive.

As in Section 10.2, equations (4) and (5), a set of data as defined at the beginning of
this section can be partitioned into parts, each of which estimates the component part of the
model:

Yijk:?-~-+ai+bj+gij+eijk (19)
where

Y... = grand mean

I
~|

a; ;.. — Y... = main effect of ith level of variable 1
bj = Y.j. —Y... = main effect of jth level of variable 2
gij = ?ij. Y. — Y.j. +Y... = interaction of ith and jth levels of variables 1 and 2

eijk = Yijx — Yij. = residual effect (error)

The quantities Y;.. and Y. j- are the means of the ith level of variable 1 and the jth level of
variable 2. In symbols,

J  nij n
- L Yijk - L Yijk
T 5 SECRPTIE S 3) 3T
nj n.j

j=1k=1 i=1 k=1

The interaction term, g;;, can be rewritten as

which is the overall deviation of the mean of the ijth cell from the grand mean minus the main
effects of variables 1 and 2. If the data can be fully explained by main effects, the term g;; will
be zero. Hence, g;; measures the extent to which the data deviate from an additive model.

For a balanced design the total sum of squares, SStotarL = > Y > (Yijx —7Y...)%? and degrees
of freedom can be partitioned additively into four parts:

SSTOTAL = SSa + SSp + SS, + SSe

n.—-1=U-D+{UT-D+U-DUJ =D+ ®n.—-1J) (20)
Let
nij
Y. = Z Y;jx = total for cell ij
k=1
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Y. =

M~

Y;j. = total for row i

~.
Il

1
Y. = Z Y;;. = total for column j
i=1

Then the equations for the sums of squares together with computationally simpler formulas are

2 2
SS, = Zn,-.(?,-.. —-Y.)? = i‘—l - i—
_ Y2 o y2
$Sp = n (T~ T =y L L @1
I’l.J n..
- YA y2?
SSy =3 > nij¥ij =Y =Y.+ Y.)P =) > ni — == =SSy —SSg
ij
_ Yz,
SSe=D D > Wik =Y =D D D VH—> > nl],

The partition of the sum of squares, the mean squares, and the expected mean squares are
given in Table 10.12.

A series of F-tests can be carried out to test the significance of the components of the model
specified by equation (18). The first test carried out is usually the test for interaction: MS,, /MS..
Under the null hypothesis Hy : y;; = 0 for all i and j, this ratio has an F-distribution with
(I —1)(J —1) and n — 1J degrees of freedom. The null hypothesis is rejected for large values
of this ratio. Interaction is indicated by nonparallelism of the treatment effects. In Figure 10.3,
some possible patterns are indicated. The expected results of F-tests are given at the top of
each graph. For example, pattern 1 shows NO—YEs—NoO, implying that the test for the main effect
of variable 1 was not significant, the test for main effect of variable 2 was significant, and the
test for interaction was not significant. It now becomes clear that if interaction is present, main
effects are going to be difficult to interpret. For example, pattern 4 in Figure 10.3 indicates
significant interaction but no significant main effects. But the significant interaction implies that
at level 1 of variable 1 there is a significant difference in the main effect of variable 2. What
is happening is that the effect of variable 2 is in the opposite direction at the second level
of variable 1. This pattern is extreme. A more common pattern is that of pattern 6. How is
this pattern to be interpreted? First, there is interaction; second, above the interaction there are
significant main effects.

There are substantial practical problems associated with significant interaction patterns. For
example, suppose that the two variables represent two drugs for pain relief administered simul-
taneously to a patient. With pattern 2, the inference would be that the two drugs together are
more effective than either one acting singly. In pattern 4 (and pattern 3), the drugs are said to act
antagonistically. In pattern 6, the drugs are said to act synergistically; the effect of both drugs
combined is greater than the sum of each acting alone. (For some subtle problems associated
with these patterns, see the discussion of transformations in Section 10.6.)

If interaction is not present, the main effects can be tested by means of the F-tests MS,, /MS,
and MSg/MS, with (I —1,n —IJ) and (J — 1,n — 1J) degrees of freedom, respectively. If a
main effect is significant, the question arises: Which levels of the main effect differ significantly?
At this point, a visual inspection of the levels may be sufficient to establish the pattern; in
Chapter 12 we establish a more formal approach.

As usual, the test MS, /MS, is of little interest, and this line is frequently omitted in an
analysis of variance table.
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@ NO-YES-NO @ YES-YES-NO j=2

8 /=D

\‘.<'
]

@ NO-YES-YES | 2 @ NO-NO-YES
j:

j=1
L 1 1 1
YES-NO-NO YES-YES-YES .
j=1 j=2
j=2
v, v,
/j= 1
(1 1 1 1
i=1 i=2 i=1 i=2
Level of Variable 1 Leve! of Variable 1

Figure 10.3 Some possible patterns for observed cell means in two-way ANOVA with two levels for each
variable. Results of F-tests for main effects variable 1, variable 2, and interaction are indicated by YES or
NoO. See the text for a discussion.

Example 10.5. Nitrogen dioxide (NO;) is an automobile emission pollutant, but less is
known about its effects than those of other pollutants, such as particulate matter. Several animal
models have been studied to gain an understanding of the effects of NO,. Sherwin and Layfield
[1976] studied protein leakage in the lungs of mice exposed to 0.5 part per million (ppm) NO,
for 10, 12, and 14 days. Half of a total group of 44 animals was exposed to the NO»; the other
half served as controls. Control and experimental animals were matched on the basis of weight,
but this aspect will be ignored in the analysis since the matching did not appear to influence the
results. Thirty-eight animals were available for analysis; the raw data and some basic statistics
are listed in Table 10.13.

The response is the percent of serum fluorescence. High serum fluorescence values indicate
a greater protein leakage and some kind of insult to the lung tissue. The authors carried out
t-tests and state that with regard to serum fluorescence, “no significant differences” were found.
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Table 10.13 Serum Fluorescence Readings of Mice Exposed to Nitrogen
Dioxide (NO;) for 10, 12, and 14 Days Compared with Control Animals

Serum Fluorescence

10 Days (j =1) 12 Days (j =2) 14 Days (j =3)

Control (i = 1) 143 179 76
169 160 40
95 87 119
111 115 72
132 171 163
150 146 78
141 — —
Exposed (i =2) 152 141 119
83 132 104
91 201 125
86 242 147
150 209 200
108 114 178
75 — —
n” Yij
J J

i 1 2 3 i 1 2 3
1 7 6 6 1 941 858 548
2 7 6 6 2 745 1039 873

J J
i 1 2 3 i 1 2 3

—

1 1344 1430 913 2477 355 432
2 1064 1732 1455 2 321 510 371

The standard deviations are very similar, suggesting that the homogeneity of variance assump-
tion is probably valid. It is a good idea again to graph the results to get some “feel” for the
data, and this is done in Figure 10.4. We can see from this figure that there are no outlying
observations that would invalidate the normality assumption of the two-way ANOVA model.

To obtain the entries for the two-way ANOVA table, we basically need six quantities:

2 2
Y2 Y2,

Y2,
no Yo Y Y Zn— Zn—j, P

n,'j

With these quantities, and using equations (20) and (21), the entire table can be computed. The
values are as follows:

n=38, Y. =5004 ) Y} =730,828

Y2 Y2, Y2
Z L — 661,476.74, Z L~ 671,196.74, Z Y — 685,472.90
n;. n.j n,-j
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Day 10 Day 12 Day 14
200
m e
2 150 1 v —— ¥, =1430
5 — Y11.=134.4 .
3 .
E - .
g 100 | . -
2 . — Yi3=913
[}
50 |+
-
0 . ) Control
L)
-
200 + . .
8 — Yy, =1732
o
- ’ —
§ 150 . A Yog= 145.5
o . .
3 _ . .
— —
uE- 100 L Yoy = 106.4 .
L]
o [
(‘B ™
50 |
Treatment
O 1 1
Day 10 Day 12 Day 14

Figure 10.4 Serum fluorescence of mice exposed to nitrogen dioxide. (Data from Sherwin and Layfield
[1976]; see Example 10.5.)

Sums of squares can now be calculated:

50042
SSy = SSTREATMENT = 661,476.74 — =2528.95
50042
SSg = SSpays = 671196.74 — = 12,248.95
50042

SS, = SSTREATMENTxDAYs = 685,472.90 — — 2528.95 —12,248.95 = 11,747.21

SSe = SSresbuaL = 730,828 — 685,472.90 = 45,355.10

(It can be shown that SS. = > (n;; — l)sizj. You can verify this for these data.) The ANOvA
table is presented in Table 10.14.
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Table 10.14 ANovA of Serum Fluorescence Levels of Mice Exposed to Nitrogen Dioxide (NOy)

Source of Variation d.f. SS MS F-Ratio

p-Value
Treatment 1 2,528.95 2528.95 1.78 > 0.10
Days 2 12,248.95 6124.48 4.32 < 0.05
Treatment x days 2 11,747.21 5873.60 4.14 < 0.05
Residual 32 45,355.10 1417.35 —
Total 37 71,880.21 — —

Source: Data from Sherwin and Layfield [1976].

The MS for interaction is significant at the 0.05 level (F> 3, = 4.14, p < 0.05). How is this
to be interpreted? The means Y;;. are graphed in Figure 10.5. There clearly is nonparallelism,
and the model is not an additive one. But more should be said in order to interpret the results,
particularly regarding the role of the control animals. Clearly, control animals were used to
provide a measurement of background variation. The differences in mean fluorescence levels
among the control animals indicate that the baseline response level changed from day 10 to
day 14. If we consider the response of the animals exposed to nitrogen dioxide standardized by
the control level, a different picture emerges. In Figure 10.5, the differences in means between
exposed and unexposed animals is plotted as a dashed line with scale on the right-hand side
of the graph. This line indicates that there is an increasing effect of exposure with time. The
interpretation of the significant interaction effect then is, possibly, that exposure did induce
increased protein leakage, with greater leakage attributable to longer exposure. This contradicts
the authors’ analysis of the data using ¢-tests. If the matching by weight was retained, it would

200

{50
8 Q
5 -t
3 )
177] =
g &
§ 1501 16 ©
i £
@
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100 | 150

10 12 14
Length of Time of Exposure (Days)

Figure 10.5 Mean serum fluorescence level of mice exposed to nitrogen dioxide, treatment vs. control.

The difference (treatment — control) is given by the dashed line. (Data from Sherwin and Layfield [1976];
see Example 10.5.)
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have been possible to consider the differences between exposed and control animals and carry
out a one-way ANOVA on the differences. See Problem 10.5.

Two-Way anova from Means and Standard Deviations

As in the one-way ANOVA, a two-way ANOVA can be reconstructed from means and standard
deviations. Let Y;;. be the mean, s;; the standard deviation, and n;; the sample size associated
withcell iji=1,...,1,j=1,...,J), assuming a balanced design. Then

1

J
Y... =ZZ}’Z,‘]‘YU., Yi.. ZZ”U?"J" Y. ;. =Znij?ij'
‘ =t

i=1

Using equation (21), SS, and SSg can now be calculated. The term ) Yl%_/n,-j in SS,, is equiv-
alent to

2
Yij

. =2
Finally, SS¢ can be calculated from
SSe =Y (nij — s}y (22)

Problems 10.22 and 10.23 deal with data presented in terms of means and standard deviations.
There will be some round-off error in the two-way analysis constructed in this way, but it will
not affect the conclusion.

It is easy to write a computer subroutine that produces such a table upon input of means,
standard deviations, and sample sizes.

10.3.2 Randomized Block Design

In Chapter 2 we discussed the statistical concept of blocking. A block consists of a subset of
homogeneous experimental units. The background variability among blocks is usually much
greater than within blocks, and the experimental strategy is to assign all treatments randomly
to the units of a block. A simple example of blocking is illustrated by the paired ¢-test. Sup-
pose that two antiepileptic agents are to be compared. One possible (valid) design is to assign
randomly half of a group of patients to one agent and half to the other. By this randomization
procedure, the variability among patients is “turned” into error. Appropriate analyses are the
two-sample 7-test, the one-way analysis of variance, or a two-sample nonparametric test. How-
ever, if possible, a better design would be to test both drugs on the same patient; this would
eliminate patient-to-patient variability, and comparisons are made within patients. The patients
in this case act as blocks. A paired t-test or analogous nonparametric test is now appropriate.
For this design to work, we would want to assign the drugs randomly within a patient. This
would eliminate a possible additive sequence effect; hence, the term randomized block design.
In addition, we would want to have a reasonably large time interval between drugs to eliminate
possible carryover effects; that is, we cannot permit a treatment x period interaction. Other
examples of naturally occurring blocks are animal litters, families, and classrooms. Constructed
blocks could be made up of sets of subjects matched on age, race, and gender.
Blocking is done for two purposes:

1. To obtain smaller residual variability

2. To examine treatments under a wide range of conditions
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A basic design principle is to partition a population of study units in such a way that
background variability between blocks is maximized, and consequently, background variability
within blocks is minimized.

Definition 10.8. In a randomized block design, each treatment is given once and only
once in each block. Within a block, the treatments are assigned randomly to the experimental
units.

Note that a randomized block design, by definition, is a balanced design: This is somewhat
restrictive. For example, in animal experiments it would require litters to be of the same size.
The statistical model associated with the randomized block design is

Yij=un+Bi +1; +¢€;j, i=1,....1, j=1,...,J 23)

and (1) Y B =Y t; =0 and (2) € are iid N (0, 02). In this model, B; is the effect of block i
and t; the effect of treatment j. In this model, as indicated, we assume no interaction between
blocks and treatments (i.e., if there is a difference between treatments, the magnitude of this
effect does not vary from block to block except for random variation). In Section 10.6 we discuss
a partial check on the validity of the assumption of no interaction.

The analysis of variance table for this design is a simplified version of Table 10.12: The
number of observations is the same in each block and for each treatment. In addition, there is
no SS for interaction; another way of looking at this is that the SS for interaction is the error
SS. The calculations are laid out in Table 10.15.

Tests of significance proceed in the usual way. The expected mean squares can be derived
from Table 10.12, making use of the simpler design.

The computations for the randomized block design are very simple. You can verify that

Y . 2
SS, =1, SSp=b Tt sS = - = (24)
n

Example 10.6. The pancreas, a large gland, secretes digestive enzymes into the intestine.
Lack of this fluid results in bowel absorption problems (steatorrhea); this can be diagnosed
by excess fat in feces. Commercial pancreatic enzyme supplements are available in three
forms: capsule, tablets, and enteric-coated tablets. The enteric-coated tablets have a protec-
tive shell to prevent gastrointestinal reaction. Graham [1977] investigated the effectiveness of
these three formulations in six patients with steatorrhea; the three randomly assigned treat-
ments were preceded by a control period. For purposes of this example, we will consider the
control period as a treatment, even though it was not randomized. The data are displayed in
Table 10.16.

To use equation 4, we will need the quantities

2 Y2
Y.. = 618.6, ZTY = 21,532.80, % =17,953.02, > ¥} =251468
The analysis of variance table, omitting SS,,, is displayed in Table 10.17.

The treatment effects are highly significant. A visual inspection of Table 10.16 suggests that
capsules and tablets are the most effective, enteric-coated tablets less effective. The author points
out that the “normal” amount of fecal fat is less than 6 g per day, suggesting that, at best, the
treatments are palliative. The F-test for patients is also highly significant, indicating that the
levels among patients varied considerably: Patient 4 had the lowest average level at 6.1 g in 24

hours; patient 5 had the highest level, with 47.1 g in 24 hours.
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Table 10.16 Effectiveness of Pancreatic Supplements on Fat Absorption in Patients with
Steatorrhea (Grams/Day)

None Enteric-Coated

Case (Control) Tablet Capsule Tablet Y;. Y;.
1 44.5 7.3 34 12.4 67.6 16.9
2 33.0 21.0 23.1 25.4 102.5 25.6
3 19.1 5.0 11.8 22.0 57.9 14.5
4 9.4 4.6 4.6 5.8 244 6.1
5 71.3 23.3 25.6 68.2 188.4 47.1
6 51.2 38.0 36.0 52.6 177.8 44.4
Y. 228.5 99.2 104.5 186.4 618.6 —
Y. 38.1 16.5 174 31.1 Y. =258

Source: Data from Graham [1977].

Table 10.17 Randomized Block Analysis of Fecal Fat Excretion of Patients with Steatorrhea

Source of Variation d.f. SS MS F-Ratio p-Value
Patients (blocks) 5 5588.38 1117.68 10.44 <0.001
Treatments 3 2008.60 669.53 6.26 <0.01
Residual 15 1605.40 107.03 — —
Total 23 9202.38 — — —

Source: Data from Graham [1977].

10.3.3 Analyses of Randomized Block Designs Using Ranks

A nonparametric analysis of randomized block data using only the ranks was developed by
Friedman [1937]. The model is that of equation (23), but the ¢;; are no longer required to be
normally distributed. We assume that there are no ties in the data; for a small number of ties
the average ranks may be used. The idea of the test is simple: If there are no treatment effects
(tj = 0 for all j), the ranks of the observations within a block are randomly distributed. For
block i, let

R;j = rank of Y;; among Y;1, Yi2,..., Yy
The Friedman statistic for testing the null hypothesis Hy : 7; =0 (where j =1,...,J) is
(R. (R.; —R.)"
Ter = 121 25
e Z T+ 1) 25)

Computationally, the following formula is easier:

J

R -
=750 ; R%; =3 +1) (26)

The null hypothesis is rejected for large values of Trr. For small randomized block designs,
the critical values of TgRr are tabulated; see, for example, Table 39 in Odeh et al. [1977], which
goes up to I = J = 6. As the number of blocks becomes very large, the distribution of Tgr
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approaches that of a y2-distribution with (J — 1) degrees of freedom. See also Notes 10.1 and
10.2.

Example 10.6. (continued) Replacing the observations for each individual by their ranks
produces Table 10.18. For individual 4, the two tied observations are replaced by the average of
the two ranks. [As a check, the total R.. of ranks must be R.. = I J(J + 1)/2. (Why?) For this
example ] =6,J =4,1J(J+1)/2=(6-4-5)/2=160, and R.. =22+8.5+9.5+20 = 60.]
The Friedman statistic, using equation (26), has the value

Trr (222 +8.524+9.52 +20%) — (3 x 6 x 5)

B 12
T 6x4x5
= 104.65 — 90 = 14.65

This quantity is compared to a x2 distribution with 3 d.f. (14.65/3 = 4.88); the p-value is
p = 0.0021. From exact tables such as Odeh et al. [1977], the exact p-value is p < 0.001. The
conclusion is the same as that of the analysis of variance in Section 10.3.2. Note also that the
ranking of treatments in terms of the total ranks is the same as in Table 10.11. For an alternative
rank analysis of these data, see Problem 10.20.

10.3.4 Types of ANOVA Models

In Section 10.2.2, two examples were mentioned of one-way analyses of variance. The first
dealt with the age at which children begin to walk as a function of various training procedures;
the second example dealt with patient hospitalization costs, based on an examination of some
hospitals (treatments) selected randomly from all the hospitals in a large metropolitan area (from
each hospital selected, a specified number of patient records are selected for cost analysis). The
experimental design associated with the first example differs from the second: In a repetition
of the first study, the same set of treatments could be used; in the second study, a new set of
hospitals could presumably be selected; that is, the “treatment levels” are randomly selected
from a larger set of treatment levels.

Definition 10.9. If the levels of a classification variable in an ANOVvA situation are selected
at random from a population, the variable is said to be a random factor or random effect.
Factors with the levels fixed by those conducting the study or which are fixed classifications
(e.g., gender) are called fixed factors or fixed effects.

Table 10.18 Rank Values for Supplement Use

Treatment
Enteric-Coated
Case Control Tablet Capsule Tablet
1 4 2 1 3
2 4 1 2 3
3 3 1 2 4
4 4 1.5 1.5 3
5 4 1 2 3
6 3 2 1 4
R.; 22 8.5 9.5 20
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Definition 10.10. ANova situations with all classification variables fixed are called fixed
effects models (model I). If all the classification variables are random effects, the design is a
random effects model (model II). If both random and fixed effects are present, the design is a
mixed effects model.

Historically, no distinction was made between model I and II designs, in part due to identical
analyses in simple situations and similar analyses in more complicated situations. Eisenhart
[1947] was the first to describe systematically the differences between the two models. Some
other examples of random effects models are:

1. A manufacturer of spectrophotometers randomly selects five instruments from its produc-
tion line and obtains a series of replicated readings on each machine.

2. To estimate the maximal exercise performance in a healthy adult population, 20 subjects
are selected randomly and 10 independent estimates of maximal exercise performance for
each person are obtained.

3. To determine knowledge about the effect of drugs among sixth graders, a researcher
randomly selects five sixth-grade classes from among the 100 sixth-grade classes in a
large school district. Each child selected fills out a questionnaire.

How can we determine whether a design is model I or model II? The basic criterion deals
with the population to which inferences are to be made. Another way of looking at this is to
consider the number of times randomness is introduced (ideally). In Example 10.2 there are two
sources of randomness: subjects and observations within subjects. If more than one “layer of
randomness” has to be passed through in order to reach the population of interest, we have a
random effects model.

An example of a mixed model is example 2 above with a further partitioning of subjects into
male and female. The factor, gender, is fixed.

Sometimes a set of data can be modeled by either a fixed or random effects model. Consider
example 1 again. Suppose that a cancer research center has bought the five instruments and is
now running standardization experiments. For the purpose of the research center, the effects of
machines are fixed effects.

To distinguish a random effects model from a fixed effects model, the components of the
model are written as random variables. The two-way random effects ANOvA model with inter-
action is written as

Yijk = u+ A; + Bj + Gij + eijk, i=1....1, j=1...,J, k=1,...,n5 27
The assumptions are:

. ejjk are iid N(0, 0%, as before.
. A; are iid N(0, 02).

. Bj are iid N (0, 07).

. Gij are iid N(0, o).

BOW N =

The total variance can now be partitioned into several components (hence another term for
these models: components of variance models). Assume that the experiment is balanced with
nij =m for all i and j. The difference between the fixed effect and random effect model is in
the expected mean squares. Table 10.19 compares the EMS for both models, taking the EMS
for the fixed effect model from Table 10.12.

The test for interaction is the same in both models. However, if interaction is present, to be
valid the test for main effects in the random effects model must use MS,, in the denominator
rather than MS..
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Table 10.19 Comparison of Expected Mean Squares in the Two-Way aANova, Fixed
Effect vs. Random Effect Models®

EMS

Source of

Variation d.f. Fixed Effect Random Effect
JmY o?

Row main effects I—1 o+ % o+ maf +mJao?
ImY p?

Column main effects J—1 o+ Jill o +mo) + mlag

1imY y?

Row x column interaction (I —1)(J —=1) o2+ ———"Y 524 o2
(I-DHJ =1 4

Residual n.—1J o? o?

“There are m observations in each cell.

The null hypothesis
Ho:yj=0 all i and j

in the fixed effect model has as its counterpart,
Cs2
Hy:0,=0

in the random effect model. In both cases the test is carried out using the ratio MS, /MS, with
(I —1)(J — 1) and n — 1J degrees of freedom. If interaction is not present, the tests for main
effects are the same in both models. However, if Hyp is not rejected, the tests for main effects
are different in the two models. In the random effects model the expected mean square for main
effects now contains a term involving a}%. Hence the appropriate F-test involves MS,, in the
denominator rather than MS,; the degrees of freedom are changed accordingly.

Several comments can be made:

1. Frequently, the degrees of freedom associated with MS,, are fewer than those of MS,, so
that there is a loss of precision if MS,, has to be used to test main effects.

2. From a design point of view, if m, I, and J can be chosen, it may pay to choose m small
and /, J relatively large if a random effects model is appropriate. A minimum of two replicates
per treatment combination is needed to obtain an estimate of o2. If possible, the rest of the
observations should be allocated to the levels of the variables. This may not always be possible,
due to costs or other considerations. If the total cost of the experiment is fixed, an algorithm
can be developed for choosing the values of m, I, and J.

3. The difference between the fixed and random effects models for the two-way ANOVA
designs is not as crucial as it seems. We have indicated caution in proceeding to the tests
of main effects if interaction is present in the fixed model (see Figure 10.3 and associated
discussion). In the random effects model, the same precaution holds. It is perhaps too strong to
say that main effects should not be tested when interaction is present, but you should certainly
be able to explain what information you hope to obtain from such tests after a full interpretation
of the (significant) interaction.

4. Expected mean squares for an unbalanced random effects model are not derivable or are
very complicated. A more useful approach is that of multiple regression, discussed in Chapter 11.
See also Section 10.5.

5. For the randomized block design the MS, can be considered the mean square for interac-
tion. Hence, in this case the F-tests are appropriate for both models. (Does this contradict the
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statement made in comment 3?) Note also that there is little interest in the test of block effects,
except as a verification that the blocking was effective.

Good discussions about inference in the case of random effects models can be found in
Snedecor and Cochran [1988] and Winer [1991].

10.4 REPEATED MEASURES DESIGNS AND OTHER DESIGNS

10.4.1 Repeated Measures Designs

Consider a situation in which blood pressures of two populations are to be compared. One
person is selected at random from each population. The blood pressure of each of the two
subjects is measured 100 times. How would you react to data analysis that used the two-sample
t-test with two samples of size 100 and showed that the blood pressures differed in the two
populations? The idea is ridiculous, but in one form or another appears frequently in the research
literature. Where does the fallacy lie? There are two sources of variability: within individuals
and among individuals. The variability within individuals is assumed incorrectly to represent
the variability among individuals. Another way of saying this is that the 100 readings are not
independent samples from the population of interest. They are repeated measurements on the
same experimental unit. The repeated measures may be useful in this context in pinning down
more accurately the blood pressure of the two people, but they do not make up for the small
sample size. Another feature we want to consider is that the sequence of observations within
the person cannot be randomized, for example, a sequence of measurements of growth. Thus,
typically, we do not have a randomized block design.

Definition 10.11. In a repeated measures design, multiple (two or more) measurements are
made sequentially on the same observational unit.

A repeated measures design usually is an example of a mixed model with the observational
unit a random effect (e.g., persons or animals, and the treatments on the observational units
fixed effects). Frequently, data from repeated measure designs are somewhat unbalanced and
this makes the analysis more difficult. One approach is to summarize the repeated measures in
some meaningful way by single measures and then analyze the single measures in the usual
way. This is the way many computer programs analyze such data. We motivate this approach
by an example. See Chapter 18 for further discussion.

Example 10.7. Hillel and Patten [1990] were interested in the effect of accessory nerve
injury as result of neck surgery in cancer. The surgery frequently decreases the strength of
the arm on the affected side. To assess the potential recovery, the unaffected arm was to be
used as a control. But there is a question of the comparability of arms due to dominance,
age, gender, and other factors. To assess this effect, 33 normal volunteers were examined by
several measurements. The one discussed here is that of torque, or the ability to abduct (move
or pull) the shoulder using a standard machine built for that purpose. The subjects were tested
under three consecutive conditions (in order of increasing strenuousness): 90°, 60°, and 30° per
second. The data presented in Table 10.20 are the best of three trials under each condition. For
completeness, the age and height of each of the subjects are also presented. The researchers
wanted answers to at least five questions, all dealing with differences between dominant and
nondominant sides:

1. Is there a difference between the dominant and nondominant arms?
2. Does the difference vary between men and women?
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Table 10.20 Peak Torque for 33 Subjects by Gender, Dominant Arm, and Age Group under Three
Conditions

90° 60° 30°
Subject Age Height (in.) Weight (Ib) DM* ND“ DM ND DM ND
Female 1 20 64 107 17 13 20 17 23 22
2 23 68 140 25 25 28 29 31 31
3 23 67 135 27 28 30 31 32 33
4 23 67 155 23 28 27 29 27 32
5 25 65 115 15 11 15 13 17 17
6 26 68 147 27 17 25 21 32 27
7 31 62 147 25 17 25 21 29 24
8 31 66 137 19 15 17 17 21 19
9 33 66 160 28 26 31 27 31 31
10 36 66 118 23 23 26 27 27 25
11 56 67 210 23 31 37 44 49 53
12 59 67 130 15 17 17 19 20 20
13 60 63 132 17 15 19 21 24 28
14 60 64 180 15 15 17 19 19 21
15 67 62 135 13 5 15 8 15 14
16 73 62 124 11 9 13 13 19 17
Male 1 26 69 140 43 43 44 43 49 41
2 28 71 175 45 43 48 45 53 52
3 28 70 125 25 29 29 37 39 41
4 28 70 175 39 41 49 47 55 44
5 29 72 150 38 33 40 33 44 37
6 30 68 145 53 41 51 40 59 44
7 31 74 240 60 49 71 54 68 53
8 32 67 168 32 31 37 31 39 30
9 40 69 174 47 37 43 47 49 53
10 41 72 190 33 25 29 25 39 27
11 41 68 184 39 24 43 25 39 33
12 56 70 200 21 11 23 12 33 24
13 58 72 168 41 35 45 37 49 39
14 59 73 170 31 32 31 31 35 38
15 60 73 225 39 41 47 45 55 49
16 68 67 140 31 23 33 27 37 33
17 72 69 125 13 17 17 19 17 25

Source: Data from Hillel and Patten [1990].
9DM, dominant arm; ND, nondominant arm.

3. Does the difference depend on age, height, or weight?
4. Does the difference depend on treatment condition?
5. Is there interaction between any of the factors or variables mentioned in questions 1 to 4?

For purposes of this example, we only address questions 1, 2, 4, and 5, leaving question 3 for
the discussion of analysis of covariance in Chapter 11.

The second to fourth columns in Table 10.21 contain the differences between the dominant
and nondominant arms; the fifth to seventh columns are reexpressions of the three differences
as follows. Let d90, d60, and d30 be the differences between the dominant and nondominant
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Table 10.21 Differences in Torque under Three Conditions
and Associated Orthogonal Contrasts®

DM-ND Orthogonal Contrasts

90° 60° 30° Constant Linear Quadratic

Female 1 4 3 1 4.6 2.1 —-04
2 0 -1 0 -0.6 0.0 0.8
3 -1 -1 -1 -1.7 0.0 0.0
4 -5 -2 -5 —-6.9 0.0 2.4
5 4 2 0 35 2.8 0.0
6 10 4 5 11.0 35 2.9
7 8 4 5 9.8 2.1 2.0
8 4 0 2 35 1.4 2.4
9 2 4 0 35 14 2.4
10 0 -1 2 0.6 —14 1.6
11 -8 -7 —4 —11.0 —-2.8 0.8
12 -2 =2 0 -2.3 —14 0.8
13 2 -2 -4 -2.3 4.2 0.8
4 0 -2 =2 -2.3 14 0.8
15 8 7 1 9.2 4.9 -2.0
16 2 0 2 2.3 0.0 1.6

Male 1 0 1 8 52 —-5.7 2.4
2 2 3 1 35 0.7 —-1.2
3 4 -8 =2 -8.1 —14 4.1
4 =2 2 11 6.4 -9.2 2.0
5 5 7 7 11.0 —14 -0.8
6 12 11 15 21.9 —2.1 2.0
7 11 17 15 24.8 —-2.8 -3.3
8 1 6 9 9.2 —-5.7 -0.8
9 10 -4 —4 1.2 9.9 5.7
10 8 4 12 13.9 —-2.8 4.9
11 15 18 6 22.5 6.4 —6.1
12 10 11 9 17.3 0.7 —-1.2
13 6 8 10 13.9 —-2.8 0.0
14 -1 0o -3 -2.3 14 —-1.6
15 =2 2 6 35 -5.7 0.0
16 8 6 4 10.4 2.8 0.0
17 -4 -2 -8 -8.1 2.8 -3.3

Source: Data from Hillel and Patten [1990].
@ See Table 10.20 for notation.

arms under each of the three conditions. Then we define

constant — d90 + d60 + d30
V3
linear = M
V2
quadratic — d90 — 2 - d60 + d30
V6

For example, for the first female subject, rounding off to one decimal place yields

443
;H=4.6
V3
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-1 g9
5 =%

4-2
4-2x®+1 oy
V6

The first component clearly represents an average difference of dominance over the three con-
ditions. The divisor is chosen to make the variance of this term equal to the variance of a single
difference. The second term represents a slope within an individual. If the three conditions were
considered as values of a predictor variable with values —1 (for 30°), O (for 60°), and 1 (for
90°), the slope would be expressed as in the second, or linear, term. The linear term assesses a
possible trend in the differences over the three conditions within an individual. The last term,
the quadratic term, fits a quadratic curve through the data assessing possible curvature or non-
linearity within an individual. This partitioning of the observations within an individual has the
property that sums of squares are maintained. For example, for the first female subject,

42 4+324+12=26=(4.6)> + 2.1)* + (—0.4)%

except for rounding. (If you were to calculate these terms to more decimal places, you would
find that the right side is identical to the left side.) In words, the variability in response within an
individual has been partitioned into a constant component, a linear component, and a quadratic
component. The questions posed can now be answered unambiguously since the three com-
ponents have been constructed to be orthogonal, or uncorrelated. An analysis of variance is
carried out on the three terms; unlike the usual analysis of variance, a term for the mean is
included; results are summarized in Table 10.22. We start by discussing the analysis of the
quadratic component. The analysis indicates that there are no significant differences between
males and females in terms of the quadratic or nonlinear component. Nor is there an overall
effect. Next, conclusions are similar for the linear effect. We conclude that there is no linear
trend for abductions at 90°, 60°, and 30°. This leaves the constant term, which indicates (1)

Table 10.22 ANovA and Means of the Data in Table 10.21

Source of Variation d.f. SS MS F-Ratio

Analysis of Variance

Constant Mean 1 900.7 900.7 13.3
Gender 1 438.5 438.5 6.48
Error 1 31 2099.2 67.72

Linear Mean 1 0.33 0.33 0.02
Gender 1 33.43 33.43 243
Error 2 31 426.0 13.74

Quadratic Mean 1 3.09 3.09 0.50
Gender 1 0.70 0.70 0.11
Error 3 31 191.2 6.17

Means

Constant Linear Quadratic

Female (n = 16) Mean 1.306 1.138  0.456
Standard deviation 5.920 2.121 1.609

Male (n = 17) Mean 8.600 —0.876  0.165
Standard deviation 9917 4.734 3.085
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that there is a significant gender effect of dominance (F7 31 = 6.48, p < 0.05) and an overall
dominance effect. The average of the constant term for females is 1.31, for males is 8.6. One
question that can be raised is whether the difference between female and male is a true gender
difference or can be attributed to differences is size. An analysis of covariance can answer this
question (see Problem 11.38).

Data from a repeated measures design often look like those of a randomized block design.
The major difference is the way the data are generated. In the randomized block, the treatments
are allocated randomly to a block. In the repeated measures design, this is not the case; not
being possible, as in the case of observations over time, or because of experimental constraints,
as in the example above. If the data are analyzed as a randomized block, care must be taken
that the assumptions of the randomized block design are satisfied. The key assumption is that of
compound symmetry: The sample correlations among treatments over subjects must all estimate
the same population correlation. The randomization ensures this in the randomized block design.
For example, for the data in Table 10.16, the correlations are as follows:

Control  Tablet Capsule

Tablet 0.658
Capsule 0.599  0.960
Coated tablet  0.852  0.784 0.833

These correlations are reasonably comparable. If the correlations are not assumed equal, a
conservative F-test can be carried out by referring the observed value of F for treatments to
an F-table with 1 and (/ — 1) [rather than (J — 1) and (/ — 1)(J — 1)] degrees of freedom).
Alternatives to the foregoing two approaches include multivariate analyses. There is a huge
literature on repeated measures analysis. The psychometric literature contains many papers on
this topic. To explore this area, consult recent issues of journals such as American Statistician.
One example is a paper by Looney and Stanley [1989]. See also Chapter 18.

10.4.2 Factorial Designs

An experimental layout that is very common in agricultural and nutritional studies is the balanced
factorial design. It is less common in medical research, due to the ever-present risk of missing
observations and ethical constraints.

Definition 10.12. In a factorial design each level of a factor occurs with every level of
every other factor. Experimental units are assigned randomly to treatment combinations.

Suppose that there are three factors with levels / = 3, J = 2, and K = 4. Then there are
3 x 2 x 4 = 24 treatment combinations. If there are three observations per combination, 72
experimental units are needed. Factorial designs, if feasible, are very economical and permit
assessment of joint effects of treatments that are not possible with experiments dealing with
one treatment at a time. The two-way analysis of variance can be thought of as dealing with a
two-factor experiment. The generalization to three or more factors does not require new concepts
or strategies, just increased computational complexity.

10.4.3 Hierarchical or Nested Designs

A hierarchical or nested design is illustrated by the following example. As part of a program
to standardize measurement of the blood level of phenytoin, an antiepileptic drug, samples with
known amounts of active ingredients are sent to four commercial laboratories for analysis. Each
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laboratory employs a number of technicians who make one or more determinations of the blood
level. A possible layout is the following:

Laboratory 1 2 3 4

Technician 12 345 6 7 8 9
Assay AN AANN AN AN

In this example, laboratory 2 employs three technicians who routinely do this assay; all other
laboratories use two technicians. In laboratory 3, each technician runs three assays; in the other
laboratories each technician runs two assays. There are three factors: laboratories, technicians,
and assays; the arrangement is not factorial: there is no reason to match technician 1 with any
technician from another laboratory.

Definition 10.13. In a hierarchical or nested design levels of one or more factors are
subsampled within one or more other factors. In other words, the levels of one or more factors
are not crossed with one or more other factors.

In the example above, the factors, “technicians” and “assay,” are not “crossed” with the first
factor but rather nested within that factor. For the factor “technician” to be “crossed,” its levels
would have to repeat within each level of “laboratory.” That is why we deliberately labeled
the levels of “technician” consecutively and introduced some imbalance. Determining whether
a design is factorial or hierarchical is not always easy. If the first of the two technicians within
a laboratory was the senior technician and the second (or second and third) a junior technician,
then “technician” could perhaps be thought of as having two levels, “senior” and “junior,”
which could then be crossed with “laboratory.” A second reason is that designs are sometimes
mixed, having both factorial and hierarchical components. In the example above, if “technician”
occurred at two levels, “technician” and “laboratory” could be crossed or factorial, but “assay”
would continue to be nested within “technician.”

10.4.4 Split-Plot Designs

A related experimental design is the split-plot design. We illustrate it with an example. We want
to test the effect of physiotherapy in conjunction with drug therapy on the mobility of patients
with arthritis. Patients are randomly assigned to physiotherapy, and each patient is given a
standard drug and a placebo in random order. The experimental layout is as follows:

Physiotherapy
i =1 (Yes) i =2 (No)
k Patient 1 2...7J 1 2...J
1 Drug Yim  —— Yo ——
2 Placebo Y, — --— Yy —--—

The patients form the “whole plots” and the drug administration, the “split plot.” These
designs are characterized by almost separate analyses of specified effects. To illustrate in this
example, let

D,‘j=Yij1—Y,‘j2 and Tl‘j=Yij1-|—Y,'j2, i=1,2, j=1,...,J

In words, D;; is the difference between drug and placebo for patient j receiving physiotherapy
level i; T;; is the sum of readings for drug and placebo. Now carry out an analysis of variance
(or two-sample 7-test) on each of these variables; see Table 10.23.
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Table 10.23 aNova Table for Split-Plot Design

Interpretation of Split-Plot Analyses

One-Way ANOVA d.f. Differences Sums

Mean 1 Mean differences Mean sums

Between groups 1 Differences x physiotherapy Sums x physiotherapy
Within groups 2(J =1 Differences within physiotherapy Sums within physiotherapy
Total 2J “Total” “Total”

An analysis of variance of the sums is, in effect, an assessment of physiotherapy (averaged
or summed over drug and placebo), that is, a comparison of 7j. and T..

The analysis of differences is very interesting. The assessment of the significance of “between
groups” is a comparison of the average differences between drug and placebo with physiotherapy
and without physiotherapy; that is, Dj. — D>. is a test for interaction. Additionally, the “mean
differences” term can be used to test the hypothesis that D.. comes from a population with
mean zero, that is, it is a comparison of drug and placebo. This test makes sense only if the
null hypothesis of no interaction is not rejected.

These remarks are intended to give you an appreciation for these designs. For more details,
consult a text on design of experiments, such as Winer [1971].

10.5 UNBALANCED OR NONORTHOGONAL DESIGNS

In previous sections we have discussed balanced designs. The balanced design is necessary to
obtain an additive partition of the sum of squares. If the design is not balanced, there are basically
three strategies available; the first is to try to restore balance. If only one or two observations are
“missing,” this is a possible strategy, but if more than two or three are missing, a second or third
alternative will have to be used. The second alternative is to use an unweighted means analysis. The
third strategy is to use a multiple regression approach; this is discussed in detail in Section 11.10.

10.5.1 Causes of Imbalance

Perhaps the most important thing you can do in the case of unbalanced data is to reflect on the
reason(s) for the imbalance. If the imbalance is due to some random mechanism unrelated to the
factors under study, the procedures discussed below are appropriate. If the imbalance is due to a
specific reason, perhaps related to the treatment, it will be profitable to think very carefully about
the implications. Usually, such imbalance suggests a bias in the treatment effects. For example,
if a drug has major side effects which cause patients to drop out of a study, the effect of the drug
may be estimated inappropriately if only the remaining patients are used in the analysis; if one
does the analysis only on patients for whom “all data are available,” biased estimates may result.

10.5.2 Restoring Balance

Missing Data in the Randomized Block Design

Suppose that the i jth observation is missing in a randomized block design consisting of I blocks
and J treatments. The usual procedure is to:

1. Estimate the missing data point by least squares using the formula

s IV +JY;—Y.

YT Ta-nU -1 (28)

where the row, column, and grand totals are those for the values present.



394 ANALYSIS OF VARIANCE

2. Carry out the usual analysis of variance on this augmented data set.
3. Reduce the degrees of freedom for MS, by 1.

If more than one observation is missing, say two or three, values are guessed for all but one,
the latter is estimated by equation (28), a second missing value is deleted, and the process is
repeated until convergence. The degrees of freedom for MS, are now reduced by the number
of observations that are missing.

Example 10.6. (continued) We return to Table 10.11. Suppose that observation Y3; = 19.1
is missing and we want to estimate it. For this example, I = 6, J = 4, Y3. = 38.8, Y.; = 209.4,
and Y.. = 599.5. We estimate Y31 by

= 6(38. 4) —599.
P = (38.8) +4(209.4) —599.5 _ .
6-DHE-1

This value appears to be drastically different from 19.1; it is. It also indicates that there is no
substitute for real data. The analysis of variance is not altered a great deal (see Table 10.24).

The F-ratios have not changed much from those in Table 10.12. So in this case, the conclu-
sions are unchanged. Note that the degrees of freedom for residual are reduced by 1. This means
that the critical values of the F-statistics are increased slightly. Therefore, this experiment has
less power than the one without missing data.

Missing Data in Two-Way and Factorial Designs

If a cell in a two-way design has a missing observation, it is possible to replace the missing point
by the mean for that cell, carry out the analysis as before, and subtract one degree of freedom
for MS¢. A second approach is to carry out an unweighted means analysis. We illustrate both
procedures by means of an example.

Example 10.8. These data are part of data used in Wallace et al. [1977]. The observations
are from a patient with prostatic carcinoma. The question of interest is whether the immune
system of such a patient differs from that of noncarcinoma subjects. One way of assessing this
is to stimulate in vitro the patient’s lymphocytes with phytohemagglutinin (PHA). This causes
blastic transformation. Of interest is the amount of blastogenic generation as measured by DNA
incorporation of a radioactive compound. The data observed are the mean radioactive counts
per minute both when stimulated with PHA and when not stimulated by PHA. As a control, the
amount of PHA stimulation in a pooled sera of normal blood donors was used. To examine the
response of a subject’s lymphocytes, the quantity

subject’s mean count/minute stimulated with PHA
subject’s mean count/minute without PHA _ Xu/Xn

= 29
normal sera mean count/minute stimulated with PHA  X21/X» 9

normal sera mean count/minute without PHA

Table 10.24 ANovA for Example 10.6

Source of Variable  d.f. SS MS F-Ratio
Patients (blocks) 5 534193  1068.39 9.90
Treatments 3 2330.30 776.77 7.20
Residual 14 1510.94 107.92 —

Total 22 9183.17 — —
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Table 10.25 DNA Incorporation of Sera of Patient
with Prostatic Carcinoma Compared to Sera from
Normal Blood Donors®

Radioactivity (counts/min)

Subject With PHA Without PHA

Patient sera 129,594 (11.772) 301 (5.707)
143,687 (11.875) 333 (5.808)
115,953 (11.661) 295 (5.687)
103,098 (11.543) 285 (5.652)
98,125 (11.494)

Blood donor sera 43,125 (10.672) 247 (5.509)
46,324 (10.743) 298 (5.697)
42,117 (10.648) 387 (5.958)
45,482 (10.725)
31,192 (10.348)

“log, of counts in parentheses.

was used. If the lymphocytes responded in the same way to the subject’s sera and the pooled
sera, the ratio should be approximately equal to 1. The data are displayed in Table 10.25.

There is a great deal of variability in the counts/minute values as related to level. In
Section 10.6.3 we suggest that logarithms are appropriate for stabilization of the variability.
There is a bonus involved in this case. Under the null hypothesis of no difference in patient and
blood donor sera, the ratio in equation (28) is 1; that is,

CE(X)/E(X1) _
O E(X21)/E(X2)

This is equivalent to

EX11)/E(X12) =log,1=0

Hp: 1 _— - = =
0 O E X/ E(Xy) e

or
log, E(X11) —log, E(X12) — log, E(X21) +log, E(X22) =0 30)

Now define
Yijkzloggxijk’ i:1,2, j:1,2, k:l,...,n,-j

It can be shown that equation (30) is zero only if the true interaction term is zero. Thus, the
hypothesis that the patient’s immune system does not differ from that of noncarcinoma subjects
is translated into a null hypothesis about interaction involving the logarithms of the radioactive
counts.

We finally get to the “missing data” problem. The data are not balanced: n;; # n;.n.;/n..
[we could delete one observation from the (1,2) cell, but considering the small numbers, we
want to retain as much information as possible]. One strategy is to add an observation to cell
(2,2) equal to the mean for that cell and adjust the degrees of freedom for interaction. The mean
Y. is 5.721. The analysis of variance becomes as shown in Table 10.26.

Note that the MS for error has 13 degrees of freedom, not 14. The MS for error will be
the correct estimate using this procedure, but the MS for interaction (and main effects) will
not be the same as the one obtained by techniques of Chapter 11. However, it should be
close.



396 ANALYSIS OF VARIANCE

Table 10.26 aNova for the Missing Data Problem

Source d.f. SS MS F-Ratio p-Value
Subject 1.4893  1.4893 — —
PHA 131.0722 131.0722 — —

1
1
PHA x subject 1 1.2247  1.2247 500 <0.001
Error 13 0.3184  0.02449 — —

Total 16 — — — —

10.5.3 Unweighted Means Analysis

The second approach is that of unweighted mean analysis. Again, assuming that the unequal cell
frequencies are not due to treatment effects, the cell means are used and an average sample size
calculated for each cell. The appropriate average sample size is given by the harmonic mean.
In the context of our example, the harmonic mean is defined to be

1J
I/ny+ 1/nia+ /0o + 1/ng

ﬁ:

where n;; is the number of observations in cell (i, j). The harmonic mean is used because the
standard error of the mean of cell (i, j) is proportional to 1/n;;. All calculations for row and
column effects are now based on cell means and the harmonic mean of the cell sample sizes.
Write the cell means and marginal means as follows:

71 1- le- Ml .
Yo1. Yo | My

~

M.] M.z M..

The marginal and overall means are just the arithmetic average of the cell means, that is, the
unweighted average (hence the name unweighted mean analysis). The row and column sums of
squares are calculated as follows:

SSy =7J Y (M. — M..)?

SSp =7l (M.;—M.)*

SS, =iy (Yij.— M. —M.j+M.)
SS. is calculated in the usual way: SS¢ = Y (Yijx — Y; j.)z. For the example, the calculations
are

Means

11.669000 5.713500 | 8.691250
10.627200 5.721333 | 8.174266

11.148100 5.717416 8.432758

The harmonic mean 7 is

n= @) = 4.067797
1/54+1/44+1/5+1/3 '

SS, = (4.067797)(2) [(8.691250 — 8.432758)% + (8.174266 — 8.432758)2] = 1.0872
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Table 10.27 ANovA Table for Unweighted Means

Source d.f. SS MS F-Ratio p-Value
Subject 1 1.0872 1.0872

PHA 1 119.688 119.6888 1

PHA x subject 1 1.1204 1.1204 457 <0.001
Error 13 0.3184 0.02449

Total 16

$Sp = (4.067797)(2) [ (11148100 — 8.432758)° + (5.717416 — 8.432758)° | = 119.6888
S8, = (4.067797) [ (4)(0.262408)| = 1.1204

making use of the fact that all the interaction deviations are equal in absolute value:

Yii.—M. —M.; + M.. =0.262408
Yio. =M. — Mo+ M.. = —0.262408, ...

The ANOVA table based on the unweighted means is shown in Table 10.27.
The conclusion remains unchanged. It turns out in this case that the test for interaction is
identical to the multiple regression procedure of Chapter 11.

10.6 VALIDITY OF ANOVA MODELS

10.6.1 Assumptions in ANOVA Models

All the models considered in this chapter have assumed at least the following:

1. Homogeneity of variance

2. Normality of the residual error

3. Statistical independence of the residual errors
4. Linearity of the model

For example, consider again the model associated with the one-way analysis of variance
(omitting the subscripts):

Y=pn+a+e

We assumed that (1) the error term € had constant variance for all values of x and «, and was
normally distributed; (2) values of ¢ were randomly (independently) selected; and (3) the
response Y was related linearly to u, o, and €.

In addition, the random effects and repeated measures models made assumptions about the
covariances of the random factors and the residual error; other models assumed zero interaction
(additivity).

If one or more of the assumptions does not hold, one of the following approaches is frequently
used:

1. The data are analyzed by a method that makes fewer assumptions: for example, nonpara-
metric analysis.
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2. Part of the data is eliminated or not used, for example, extreme values (i.e., outliers) are
deleted or replaced by less extreme values. Deletion usually induces bias.

3. The measurement variables are replaced by categorical variables and some kind of analysis
of frequencies is carried out; for example, “age at first pregnancy” is replaced by “teenage
mother: yes—no,” and the number of observations in various categories is now the outcome
variable.

4. A weighted analysis is done; for example, if the variance is not constant at all levels of
response, the responses are weighted by the inverse of the variances. The log-linear models of
Chapter 7 are an example of a weighting procedure.

5. The data are “transformed” to make the assumptions valid. Typical transformations are:
logarithmic, square root, reciprocal, and arcsin 4/ . These transformations are nonlinear. Linear
transformations do not alter the analysis of variance tests.

6. Finally, appeal is made to the “robustness” of the ANOvA and the analysis is carried out
anyway. This is a little bit like riding a bicycle without holding onto the handle bars; it takes
experience and courage. If you arrive safely, everyone is impressed, if not, they told you so.

The most common approach is to transform the data. There are advantages and disadvantages
to transformations. A brief discussion is presented in the next section. In the other sections we
present specific tests of the assumptions of the ANOvA model.

10.6.2 Transformations

Some statisticians recommend routine transformations of data before any analysis is carried
out. We recommend the contrary approach; do not carry out transformations unless necessary,
and then be very careful, particularly in estimation. We discuss this more fully below, but first
we present some common transformations. Table 10.28 lists seven of the most commonly used
transformations and one somewhat more specialized one. Each row in the table lists some of
the characteristics of the transformation and its uses. A large number of these transformations
are variance stabilizing. For example, if the variance of Y is )Lz,uy, where A is a constant and
wy is the expected value of ¥, then /Y tends to have a variance that is constant and equal
to A2/4. Hence, this transformation is frequently associated with a Poisson random variable: in
this case A = 1, so that +/Y tends to have a variance of 1/4 regardless of the value of wy. This
result is approximate in that it holds for large values of py. However, the transformation works
remarkably well even for small py, say, equal to 10. Freeman and Tukey [1950] have proposed
a modification of the square root transformation which stabilizes the variance for even smaller
values of wy. Variance stabilizing transformations tend to be normalizing as well and can be
derived explicitly as a function of the variance of the original variable.

The logarithmic transformation is used to stabilize the variance and/or change a multiplica-
tive model into an linear model. When the standard deviation of Y is proportional to wy the
logarithmic transformation tends to stabilize the variance. The reciprocal transformation (one per
observation) is used when the variance is proportional to ;L;‘,. These first three transformations
deal with a progression in the dependence of the variance of ¥ on uy: from uy to u‘)‘,. The
transformations consist of raising Y to an exponent from Y/ to Y =1 If we define the limit of
Y? to be log, Y as b approaches 0, these transformations represent a gradation in exponents. A
further logical step is to let the data determine the value of b. This transformation, Y?, is an
example of a power transformation. (Power here does not imply “powerful” but simply that Y
is raised to the bth power.) See Note 10.4 for additional comments.

The next two transformations are used with proportions or rates. The first one of these is the
ubiquitous logistic transformation, which is not variance stabilizing but does frequently induce
linearity (cf. Section 7.5). The angle transformation is variance stabilizing but has a finite range;
it is not used much anymore because computational power is now available to use the more
complex but richer logistic transformation.
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The Fisher Z-transformation is used to transform responses whose range is between —1 and
+1. It was developed specifically for the Pearson product-moment correlation coefficient and
discussed in Chapter 9. Finally, we mention one transformation via ranks, the normal scores
transformation. This transformation is used extensively in nonparametric analyses and discussed
in Chapter 8.

There are benefits to the use of transformations. It is well to state them explicitly since we
also have some critical comments. The benefits include the following:

-

. Methods using the normal distribution can be used.

[\

. Tables, procedures, and computer programs are available.

w

. A transformation derived for one purpose tends to achieve some other purposes as well—
but not always.

=

. Inferences (especially relating to hypothesis testing) can be made more easily.

wn

. Confidence intervals in the transformed scale can be “transformed back™ (but estimates
of standard errors cannot).

Transformations are more useful for testing purposes than for estimation. The following
drawbacks of transformations should be kept in mind:

1. The order of statistics may not be preserved. Consider the following two sets of data:
sample 1 : 1, 10; sample 2 : 5, 5. The arithmetic means are 5.5 and 5.0, respectively.
The geometric means (i.e., the antilogarithms of the arithmetic mean of the logarithms of
the observations) are 3.2 and 5.0, respectively. Hence, the ordering of the means is not
preserved by the transformation (the ordering of the raw data is preserved).

2. Contrary to some, we think that there may be a “natural scale” of measurement. Some
examples of variables with a natural scale of measurement are “life expectancy” measured
in years, days, or months; cost of medical care in dollars; number of accidents attributable
to alcoholism. Administrators or legislators may not be impressed with, or willing to think
about, the cost of medical care in terms of “square root of millions of dollars expended.”

3. Closely related is the problem of bias. An obvious approach to the criticism in our discus-
sion of drawback 2 is to do the analysis in the transformed units and then transform back
to the original scale. Unfortunately, this introduces bias as mentioned in our discussion of
drawback 1. Formally, if Y is the variable of interest and W = g(Y) its transform, then
it is usually the case that

E(W) # g(E(Y))

There are ways of assessing this bias and eliminating it but such methods are cumbersome
and require an additional layer of computations, something the transformation was often
designed to reduce!

4. Finally, many of the virtues of transformations are asymptotic virtues; they are approached
as the sample size becomes very large. This should be kept in mind when analyzing
relatively small data sets.

10.6.3 Testing of Homogeneity of Variance

It is often the case that the variance or standard deviation is proportional to the mean level of
response. There are two common situations where this occurs. First, where the range of response
varies over two or more orders of magnitude; second, in situations where the range of response
is bounded, on the left, the right or both. Examples of the former are Poisson random variables;
examples of the latter, responses such as proportions, rates, or random variables that cannot be
negative.
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Figure 10.6 Mean serum fluorescence level and standard deviation. (Data from Sherwin and Layfield
[1976]; see Example 10.5.)

The simplest verification of homogeneity of variance is provided by a graph, plotting the
variance or standard deviation vs. the level of response.

Example 10.5. (continued) 1In Table 10.8, the means and standard deviations of serum flu-
orescence readings of mice exposed to nitrogen dioxide are given. In Figure 10.6 the standard
deviations are plotted against the means of the various treatment combinations. This example
does not demonstrate any pattern between the standard deviation and the cell means. It would
not be expected because the range of the cell means is fairly small.

Example 10.9. A more interesting example is the data of Quesenberry et al. [1976] dis-
cussed in Problem 3.14. Samples of peanut kernels were analyzed for aflatoxin levels. Each
sample was divided into 15 or 16 subsamples. There was considerable variability in mean levels
and corresponding standard deviations.

A plot of means vs. standard deviations displays an increasing pattern, suggesting a log-
arithmic transformation to stabilize the variance. This transformation as well as two other
transformations (+/Y, Y1/4) are summarized in Table 10.29. Means vs. standard deviations are

Table 10.29 Aflatoxin Levels in Peanut Kernels: Means and Standard Deviations for 11 Samples
Using Transformations

Mean and Standard Deviation of Aflatoxin Level

Y w=yl4 W=4\Y W =logY
Sample n Mean SD Mean SD Mean SD Mean SD
1 16 110 25.6 32 0.192 10.4 1.24 4.7 0.240
2 16 79 20.6 3.0 0.204 8.8 1.19 43 0.281
3 16 21 3.9 2.1 0.109 45 0.45 3.0 0.213
4 16 33 12.2 24 0.192 5.7 0.96 34 0.311
5 15 32 10.6 24 0.194 5.6 0.92 34 0.328
6 16 15 2.7 2.0 0.089 3.8 0.35 2.7 0.183
7 15 33 6.2 2.4 0.111 5.8 0.54 35 0.183
8 16 31 2.8 2.4 0.054 5.6 0.26 3.4 0.092
9 16 17 4.2 2.0 0.129 4.1 0.51 2.8 0.261
10 16 8 3.1 1.7 0.143 29 0.49 2.1 0.339
11 15 84 17.7 3.0 0.164 9.1 0.98 44 0.221

Source: Data from Quesenberry et al. [1976].
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Figure 10.7 Means vs. standard deviation, arithmetic and logarithmic scales. (Data from Wallace et al.
[1977]; see Example 10.8.)

plotted in Figure 10.7. The first pattern clearly indicates a linear trend; the plot for the data
expressed as logarithms suggests very little pattern. This does not prove that the lognormal
model is appropriate. Quesenberry et al. [1976], in fact, considered two classes of models: the

11 samples are from normal distributions with means and variances u;, oi2, i=1,...,11; the
second class of models assumes that the logarithms of the aflatoxin levels for the 11 samples
come from normal distributions with means and variances y;, 02,i=1,...,11.

On the basis of their analysis, they conclude that the normal models are more appropriate.
The cost is, of course, that 10 more parameters have to be estimated. Graphs of means vs.
standard deviation for the /Y and Y/ scale still suggest a relationship.

The tests of homogeneity of variance developed here are graphical. There are more formal
tests. All of the tests assume normality and are sensitive to departure from normality. In view
of the robustness of the analysis of variance to heterogeneity of variance, Box [1953] remarked
that “. .. to make the preliminary tests on variances is rather like putting to sea in a rowing boat
to find out whether conditions are sufficiently calm for an ocean liner to leave port.” There are
four common tests of homogeneity of variance, associated with the names of Hartley, Cochran,
Bartlett, and Scheffé. Only the first two are described here, they will be adequate for most
purposes. For a description of the other tests see, for example, Winer [1971]. Suppose that
there are k samples with sample size n; and sample variance siz, i=1,..., k. For the moment,
assume that all n; are equal to n. Hartley’s test calculates

2
maximum
Fyvax = -
Sminimum
Cochran’s test calculates
s2
maximum
C =

s

In the absence of software for computing critical values, both statistics can be referred to
appropriate tables in the Web appendix. If the sample sizes are not equal, the tables can be
entered with the minimum sample size to give a conservative test and with the maximum
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Table 10.30 Calculations for Example 10.9

Scale Fmax C
25.6\2 (25.7)2
Y =) =899 =0.38
2.7 1758.1
1.24\? (1.24)2
VY —) =227 =0.16
( .26) 9.787
0.204\2 0.204)2
yl4 ) =141 ( " _ 0.16
0.054 0.252
0.339\2 (0.339)2
Critical value at 0.05 level 5.8 0.15

sample size to give a “liberal” test (i.e., the null hypothesis is rejected more frequently than the
nominal significance level).

Example 10.9. (continued) For the transformations considered, the Fyax test and C test
statistics are as shown in Table 10.30.

The critical values have been obtained by interpolation. The Fyax test indicates that none of
the transformations achieve satisfactory homogeneity of variance, validating one of Quesenberry
et al.’s conclusions. The Cochran test suggests that there is little to choose between the three
transformations.

A question remains: How valid is the analysis of variance under heterogeneity of variance?
Box [1953] indicates that for three treatments a ratio of 3 in the maximum-to-minimum pop-
ulation variance does not alter the significance level of the test appreciably (one-way ANOvA
model with n;. =5, I = 3). The analysis of variance is therefore reasonably robust with respect
to deviation from homogeneity of variance.

10.6.4 Testing of Normality in ANOVA

Tests of normality are not as common or well developed as tests of homogeneity of variance.
There are at least two reasons: first, they are not as crucial because even if the underlying
distribution of the data is not normal, appeal can be made to the central limit theorem. Second,
it turns out that fairly large sample sizes are needed (say, n > 50) to discriminate between
distributions. Again, most tests are graphical.

Consider for simplicity the one-way analysis of variance model

Y,'j:/,L-{-O{i-f—Gij, i=1,...,1, j:l,...,}’li
By assumption the ¢;; are iid N (0, o2). The ¢; j are estimated by
€j =Y — ?i-

The ¢;; are normally distributed with population mean zero; »_ eizj /(n — I) is an unbiased

estimate of o2 but the ¢; j are not statistically independent. They can be made statistically
independent, but it is not worthwhile for testing the normality. Some kind of normal probability
plot is usually made and a decision made based on a visual inspection. Frequently, such a plot is
used to identify outliers. Before giving an example, we give a simple procedure which is based
on the use of order statistics.
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Definition 10.14. Given a sample of n observations, Y1, Y2, ... ,Y,, the order statistics
Yy, Y, ..., Y are the values ranked from lowest to highest.

Now suppose that we generate samples of size n from an N (0, 1) distribution and average
the values of the order statistics.

Definition 10.15. Rankits are the expected values of the order statistics of a sample of size
n from an N (0, 1) distribution. That is, let Z(j), ... , Z(,) be the order statistics from an N (0, 1)
population; then the rankits are E(Z(1)), E(Z@)), ... , E(Zw)).

Rankits have been tabulated in Table A.13. A plot of the order statistics of the residuals
against the rankits is equivalent to a normal probability plot. A reasonable approximation for
the ith rankit is given by the formula

E(Z@) =491[p"" — (1 - p)*1H 31)

where

i—3/8
n+1/4

For a discussion, see Joiner and Rosenblatt [1971]. To illustrate its use we return to Example 10.1.
A one-way analysis of variance was constructed for these data and we now want to test the
normality assumption.

Example 10.1. (continued) The distribution of ages at which infants first walked [discussed
in Section 10.2.1 (see Table 10.1)] is now analyzed for normality. The residuals Y;; — Y;. for
the 23 observations are:

—-1.125 —-0.375 —-0.208 0.900
—-0.625 —1.375 0.292 —0.850
-0.375 —-1.375 —-2.708 —0.350
—0.125 0.375 —0.208 1.150

2875 —0.875 1.542  —0.850
—0.625 3.625 1.292

Note that the last observation has been omitted again so that we are working with the
23 observations given in the paper. These observations are now ranked from smallest to largest
to be plotted on probability paper. To illustrate the use of rankits, we will calculate the expected
values of the 23 normal (0,1) order statistics using equation (31). The 23 order statistics for e;,
e(ij)» and the corresponding rankits are presented in Table 10.31.

For example, the largest deviation is —2.708; the expected value of Z(j) associated with this
deviation is calculated as follows:

1—
p= 1238 02688
23+ 1/4
E(Z(1)) = 4.91[(0.02688)%!* — (1 — 0.02688)*1%]
=-1.93

The rankits and the ordered residuals are plotted in Figure 10.8. What do we do with this
graph? Is there evidence of nonnormality?
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Table 10.31 Order Statistics for Example 10.1

e(ij) E(Zj) eij) E(Zap) | ewp  E(Zuj)

-2708 —193 | —0.625 —0.33 0.375 0.57
—1375 —148 | —0375 —0.22 0.900 0.70
—1375 —121 | —0375 —0.11 1.150 0.84
—1.125 —101 | —0.350 0.0 1.292 1.01
—0.875 —0.84 | —0.208 0.11 1.542 1.21
—0.850  —070 | —0.208 0.22 2.875 1.48
—0.850  —0.57 | —0.125 0.33 3.625 1.93
—0.625 —044 | —0.292 0.44

4 +
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Figure 10.8 Normal probability plot of residuals from linear model. (Data from Zelazo et al. [1972]; see
Example 10.1.)

There does seem to be some excessive deviation in the tails. The question is: How important
is it? One way to judge this would be to generate many plots for normal and nonnormal data
and compare the plots to develop a visual “feel” for the data. This has been done by Daniel
and Wood [1999] and Daniel [1976]. Comparison of this plot with the plots in Daniel and
Wood suggests that these data deviate moderately from normality. For a further discussion, see
Section 11.8.1.

More formal tests of normality can be carried out using the Kolmogorov—Smirnov test of
Chapter 8. A good test is based on the Pearson product-moment correlation of the order statistics
and corresponding rankits. If the residuals are normally distributed, there should be a very high
correlation between the order statistics and the rankits. The (null) hypothesis of normality is
rejected when the correlation is not large enough. Weisberg and Bingham [1975] show that this
is a very effective procedure. The critical values for the correlation have been tabulated; see, for
example, Ryan et al. [1980]. For n > 15, the critical value is on the order of 0.95 or more. This
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is a simple number to remember. For Example 10.1, the correlation between the order statistics
of the residuals, e(;j) and the rankits E(Z;)) is r = 0.9128 for n = 23. This is somewhat
lower than the critical value of 0.95 again, suggesting that the residuals are “not quite” normally
distributed.

10.6.5 Independence

One of the most difficult assumptions to verify is that of statistical independence of the residuals.
There are two problems. First, tests of independence for continuous variables are difficult to
implement. Frequently, such tests are, in fact, tests of no correlation among the residuals, so
that if the errors are normally distributed and uncorrelated, they are independent. Second, the
observed residuals in the analysis of variance have a built-in dependence due to the constraints
on the linear model. For example, in the one-way analysis of variance with / treatments and,
say, n;. = m observations per treatment, there are mI residuals but only (m — 1)/ degrees of
freedom; this induces some correlation among the residuals. This is not an important dependence
and can be taken care of.

Tests for dependence usually are tests for serial correlation (i.e., correlation among adjacent
values). This assumes that the observations can be ordered in space or time. The most common
test statistic for serial correlation is the Durbin—Watson statistic. See, for example, Draper and
Smith [1998]. Computer packages frequently will print this statistic assuming that the observa-
tions are entered in the same sequence in which they were obtained. This, of course, is rarely
the case and the statistic and its value should not be used. Such “free information” is sometimes
hard to ignore; the motto for computer output is caveat lector (let the reader beware).

10.6.6 Linearity in ANOVA

Like independence, linearity is difficult to verify. In Example 10.7 we illustrated a multiplicative
model. The model was transformed to a linear (nonadditive) model by considering the logarithm
of the original observations. Other types of nonlinear models are discussed in Chapters 11 to
15. Evidence for a nonlinear model may consist of heterogeneity of variance or interaction.
However, this need not always be the case. Scheffé [1959] gives the following example. Suppose
that there are I + J 4 1 independent Poisson variables defined as follows: Uy, Ua, ... , Uy have
means o, ®,...,ar; Vi, Vo,...,V; have means B, B2,..., By; and W has mean y. Let
Yij = W+ U; + Vj; then E(Y;;) = y +a; + B;; that is, we have an additive, linear model. But
var(Y;;) = y +a; + B;, so that there is heterogeneity of variance (unless all the ; are equal and
all the B; are equal). The square root transformation destroys the linearity and the additivity.
Scheffé [1959] states: “It is not obvious whether ¥ or +/Y is more nearly normal ... but in the
present context it hardly matters.” A linear model is frequently assumed to be appropriate for
a set of data without any theoretical basis. It may be a reasonable first-order approximation to
the “state of nature” but should be recognized as such.

Sometimes a nonlinear model can be derived from theoretical principles. The form of the
model may then suggest a transformation to linearity. But as the example above illustrates, the
transformation need not induce other required properties of ANOVA models, or may even destroy
them.

Another strategy for testing linearity is to add some nonlinear terms to the model and then
test their significance. In Sections 11.7 and 11.8 we elaborate on this strategy.

10.6.7 Additivity

The term additivity is used somewhat ambiguously in the statistical literature. It is sometimes
used to describe the transformation of a multiplicative model to a linear model. The effects
of the treatment variables become “additive” rather than multiplicative. We have called such a
transformation a linearizing transformation. It is not always possible to find such a transformation
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(see Section 11.10.5). We have reserved the term additivity for the additive model illustrated by
the two-way analysis of variance model (see Definition 10.4). A test for additivity then becomes
a test for “no interaction.” Scheffé [1959] proves that transformations to additivity exists for a
very broad class of models.

The problem is that the existence of interaction may be of key concern. Consider
Example 10.8. The existence of interaction in this example is taken as evidence that the immune
system of a patient with prostatic carcinoma differed from that of normal blood donors. This
finding has important implications for a theory of carcinogenesis. These data are an example
of the importance of expressing observations in an appropriate scale. Of course, what evidence
is there that the logarithms of the radioactive count is the appropriate scale? There is some
arbitrariness, but the original model was stated in terms of percentage changes, and this implies
constant changes on a logarithmic scale.

So the problem has been pushed back one step: Why state the original problem in terms of
percentage changes? The answer must be found in the experimental situation and the nature of
the data. Ultimately, the researcher will have to provide justification for the initial model used.

This discussion has been rather philosophical. One other situation will be considered: the
randomized block design. There is no test for interaction because there is only one observation
per cell. Tukey [1949] suggested a procedure that is an example of a general class of procedures.
The validity of a model is evaluated by considering an enlarged model and testing the significance
of the terms in the enlarged model. To be specific, consider the randomized block design model
of equation (23):

Yij=un+Bi +1; +¢ij, i=1,...,1, j=1,...,J
Tukey [1949] embedded this model in the “richer” model
Yij=u+Bi +1; +ABitj + ¢&ij, i=1,...,1, j=1,...,J (32)
He then proposed to test the null hypothesis,
Hy:2=0

as a test for nonadditivity. Why this form? It is the simplest nonlinear effect involving both
blocks and treatments. The term A is estimated and tested as follows. Let the model without
interaction be estimated by

Yij =Y. + b; +tj +eij
where

b; :Y,'. —?..,IjIY.j—?.. and €j :Y,'j—?.. —b,'—tj

We have the usual constraints,

Zb,‘ :Zl‘j =0
Ze,-j =Zeij =0 for all i and j
i

J

and

Now define
X,‘j=bitj, i=1,...,1, j=1,...,] (33)

It can be shown that the least squares estimate, 3:, of A is

2 XijYij
2
ZXij

A= (34)
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Since X = 0 (why?), the quantity X is precisely the regression of ¥;; on X;;. The sum of
squares for regression is the sum of squares for nonadditivity in the ANOVA table:

(X x,vi)°
Y X2

The ANOVA table for the randomized block design including the test for nonadditivity is dis-
played in Table 10.32. As expected, the SS; has one degree of freedom since we are estimating
a slope. But who “pays” for the one degree of freedom? A little reflection indicates that it must
come out of the error term; the number of constraints on the block and treatment effects remain
the same. A graph of ¥;; vs. X;; (or equivalently, ¢;; vs. X;;) will indicate whether there is any
pattern.

The idea of testing models within larger models as a way of testing the validity of the model
is discussed further in Section 11.8.2.

SS;. = SShonadditivity = (35)

Example 10.6. (continued) We now apply the Tukey test for additivity to the experiment
assessing the effect of pancreatic supplements on fat absorption in patients with steatorrhea,
discussed in Section 10.3.2. We need to calculate SS; from equation (35) and this involves the
regression of Y;; on X;;, where X;; is defined by equation (33). To save space we calculate
only a few of the X;;. For example,

X1 = (7). - V..) (V. - V..)
= (16.9 — 25.775)(38.083 — 25.775)
= —109.2

and

X3 = (?2 —7) (?3 — ?)
= (25.625 — 25.775)(17.417 — 25.775)
=13

(Note that a few more decimal places for the means are used here as compared to
Table 10.15.) A graph of ¥;; vs. X;; is presented in Figure 10.9. The estimate of the slope is

_(—109.2)(44.5) + (82.0)(7.3) 4 - - - + (98.8)(52.6)
- (—109.2)2 + (82.0)2 + - - - + (98.8)2

13,807
T 467,702
= 0.029521
SS; is
13,807)2
SS; = {3,807 _ 407.60
467,702

The analysis of variance is tabulated in Table 10.33.
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Figure 10.9 Plot of the Tukey test for additivity. See the text for an explanation.

Table 10.33 Randomized Block Analysis with Tukey Test for Additivity of Fecal Fat Excretion of
Patients with Steatorrhea

Source of Variation d.f. SS MS F-Ratio p-Value
Patients 5 5588.38 1117.68 13.1 <0.001
Treatments 3 2008.60 669.53 7.83 <0.01
Additivity 1 407.60 407.60 4.76 0.025 < p < 0.05
Residual 14 1197.80 85.557

Total 23 9202.38

Source: Data from Graham [1977].

The test for additivity indicates significance at the 0.05 level (p = 0.047); thus there is some
evidence that the data cannot be represented by an additive model. Tukey [1949] related the
constant a in Y (power transformation) to the degree of nonadditivity by the following formula:

o~

a=1—-AY...

The quantity @ is a statistic and hence a random variable. For a particular set of data, the
confidence interval on @ will tend to be fairly wide; hence, a “nice” value of “a” is usually
chosen. For the example, @ = 1 — (0.029521)(25.775) = 0.239. A “nice” value for “ a” is thus
0.25, or even 0.20.

10.6.8 Strategy for Analysis of Variance

It is useful to have a checklist in carrying out an ANOvA. Not every item on the list needs to
be considered, nor necessarily in the order given, but you will find it useful to be reminded of
these items:

1. Describe how the data were generated: from what population? To what population will
inferences be made? State explicitly at what steps in the data generation randomness
entered.
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2. Specify the ANovA null hypotheses, alternative hypotheses; whether the model is fixed,
random, or mixed.

3. Graph the data to get some idea of treatment effects, variability, and possible outliers.
4. If necessary, test the homogeneity of variance and the normality.

5. If ANovA is inappropriate on the data as currently expressed, consider alternatives. If
transformations are used, repeat steps 2 and 4.

6. Carry out the ANovaA. Calculate F-ratios. Watch out for F-ratios much less than 1; they
usually indicate an inappropriate model.

7. State conclusions and limitations.

=]

. If null hypotheses are not rejected, consider the power of the study and of the analysis.
9. For more detailed analyses and estimation procedures, see Chapter 12.

NOTES

10.1 Tiesin Nonparametric Analysis of Variance (One-Way and Randomized Block)

As indicated, both the Kruskal-Wallis and the Friedman tests are conservative in the presence
of ties. The adjustment procedure is similar to those used in Chapter 8, equation (4). For the
Kruskal-Wallis situation, let

Crw — Yii (7 — 1)

KW= —"—>3 ——

n° —n
where L is the number of groups of tied ranks and #; is the number of ties in group [/, [ =
1,..., L. Then the statistic Txw [equation (13)] is adjusted to Tapy = Tkw/(1 — Ckw). Since
0 < Ckw < 1, Tapy = Txw. Hence, if the null hypothesis is rejected with Tkw, it will certainly
be rejected with Tapy since the degrees of freedom remain unchanged. Usually, Cxw will be
fairly small: Suppose that there are 10 tied observations in an ANova of 20 observations; in this
case Cxw (10 — 10)/(20° — 20) = 0.1241, so that Tapy = Tgw/(1 — 0.1241) = 1.14Tkw. The
adjusted value is only 14% larger than the value of Txw even in this extreme situation. (If the
10 ties are made up of five groups of two ties each, the adjustment is less than 0.5%).
A similar adjustment is made for the Friedman statistic, given by equations (25) and (26).

In this case,

I Li
_ Dicl 2ty (’5 — tir)
I(J3 -J)

Crr

where #;; is the number of ties in group / within block i and untied values within a block are
counted as a group of size 1. (Hence Zle'l ti; = J for every i.) The adjusted Friedman statistic,
Tapy, 18 Tapy = Trr/(1 — Cpr). Again, unless there are very many ties, the adjustment factor,
Crr will be relatively small.

10.2 Nonparametric Analyses with Ordered Alternatives

All the tests considered in this chapter have been “omnibus tests”; that is, the alternative hypothe-
ses have been general. In the one-way ANOVA, the null hypothesis is Hy : 1 = pp = --- =
i1 = i, the alternative hypothesis Hy : u; # u; for at least one i and i’. Since the power
of a test is determined by the alternative hypothesis, we should be able to “do better” using
more specific alternative hypotheses. One such hypothesis involves ordered alternatives. For
the one-way ANOVA (see Section 10.2), let Hy : u; < pp < --- < py with at least one strict
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inequality. A regression-type parametric analysis could be carried out by coding the categories
X=1,X=2,...,X=1.

A nonparametric test of Hy against an ordered alternative H; was developed by Terpstra and
Jonckheere (see, e.g., Hollander and Wolfe [1999]). The test is based on the Mann—Whitney
statistic (see Section 8.6). The Terpstra—Jonckheere statistic is

-1 1

TTJZZ Z Mik=ZMik

i=1k=i+1 i<k

where My, is the number of pairs with the observation in group i less than that of group k(i < k)
among the n;ny pairs.

Under the null hypothesis Hy : 1 = ua = --- = uy = W, the statistic 7y has a distribution
that approaches a normal distribution as n becomes large, with mean and variance given by

2 2
n- — n:
E[Tn] = 742 :

and

[(n%(2n +3) — > n?@2n; +3)]
72

var[Tty] =

where n =ny +ny +---+ny. See Problems 10.3 and 10.11 for an application.

In Section 10.3.3, a nonparametric analysis of randomized block design was presented to test
the null hypothesis Hy : 11 = 17 = --- = t; = 0. Again, we consider an ordered alternative,
Hj: 11 <10 <--- <17 with at least one strict inequality. Using the notation of Section 10.3.3,
let R.; = sum of ranks for treatment j. Page [1963] developed a nonparametric test of Hy
against Hj. The statistic TpAGE = ZJJ'=1 JR.; under the null hypothesis approaches a normal
distribution (as / become large) with mean and variance

1J2(J+1)
E [Tpace] = —
and
(Toscal I(J3=J)?
var =
PAGEL= Taa(7 =)

10.3 Alternative Rank Analyses

Conover and Iman [1981] in a series of papers have advocated a very simple rank analysis:
Replace observations by their ranks and then carry out the usual parametric analysis. These
procedures must be viewed with caution when models are nonadditive [Akritas, 1990] and
discussion in Chapter 8. Hettmansperger and McKean [1978] provide an illustration of another
class of rank-based analytical procedures that can be developed. There are three steps in this
type of approach:

1. Define a robust or nonparametric estimate of dispersion.
2. State an appropriate statistical model for the data.

3. Given a set of data, estimate the values of the parameters of the model to minimize the
robust estimate of dispersion.
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A drawback of such procedures is that estimates cannot be written explicitly, and more
important, the estimation procedure is nonlinear, requiring a computer to carry it out. However,
with the increasing availability of microcomputers, it will only be a matter of time until software
will be developed, making such procedures widely accessible.

It is possible to run a parametric analysis of the raw data routinely and compare it with
some alternative rank analysis. If the two analyses do not agree, the data should be examined
more carefully to determine the cause of the discrepant results; usually, it will be due to the
nonnormality of the data. The researcher then has two choices: if the nonnormality is thought to
be a characteristic of the biological system from which the data came, the rank analysis would
be preferred. On the other hand, if the nonnormality is due to outliers (see Chapter 8), there
are other options available, all the way from redoing the experiment (more carefully this time),
to removing the outliers, to sticking with the analysis of the ranks. Clearly, there are financial,
ethical, and professional costs and risks. What should not be done in the case of disagreement is
to pick the analysis that conforms, in some sense, to the researcher’s preconceptions or desires.

10.4 Power Transformation

Let Y% be a transformation of Y. The assumption is that ¥? is normally distributed with mean
@ (which will depend on the experimental model) and variance o2. The SS; will now be a
function of §. It can be shown that the appropriate quantity to be minimized is

n
L(3) =SS - > In(sy®)
and defined to be
n
= 58 - > lny

for § = 0 (corresponding to the logarithmic transformation). Typically, this equation is solved
by trial and error. With a computer this can be done quickly. Usually, there will be a range of
values of § over which the values of L(§) will be close to the minimum; it is customary then to
pick a value of § that is simple. For example, if the minimum of L(8) occurs at § = 0.49, the
value chosen will be § = 0.50 to correspond to the square root transformation. For an example,
see Weisberg [1985]. Empirical evidence suggests that the value of § derived from the data is
frequently close to some “natural” rescaling of the data. (This may just be a case of perfect
20/20 hindsight.)

PROBLEMS

For Problems 10.1 to 10.23, carry out one or more of the following tasks. Additional tasks are
indicated at each problem.

(a) State an appropriate ANOvA model, null hypotheses, and alternative hypotheses.
State whether the model is fixed, random, or mixed. Define the population to
which inferences are to be made.

(b) Test the assumption of homogeneity of variance.

(c) Test the assumption of normality using a probability plot.

(d) Test the assumption of normality correlating residuals and rankits.
(e) Graph the data. Locate the cell means on the graph.

(f) Transform the data. Give a rationale for transformation.
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Carry out the analysis of variance. State conclusions and reservations. Compare
with the conclusions of the author(s) of the paper. If possible, estimate the power
if the results are not significant.

Carry out a nonparametric analysis of variance. Compare with conclusions of
parametric analysis.

Partition each observation into its component parts [see, e.g., equations (4) and
(19)] and verify that the sum of squares of each component is equal to one of
the sums of squares in the ANOVA table.

Construct the ANOvA table from means and standard deviations (or standard
errors). Do relevant parts of (g).

Olsen et al. [1975] studied “morphine and phenytoin binding to plasma proteins in
renal and hepatic failure.” Twenty-eight subjects with uremia were classified into four
groups. The percentage of morphine that was bound is the endpoint.

Chronic (n1 = 18) : 31.5,35.1,32.1, 34.2, 26.7, 31.9, 30.8,

27.3,27.3,29.0, 30.0, 36.4, 39.8, 32.0, 35.9,29.9, 32.2, 31.8

Acute (np =2): 31.6,28.5
Dialysis (n3 = 3) : 29.3,32.1,26.9

Anephric (ng =5) : 26.5,22.7,27.5,24.9,23.4

(a)
(b)

Do tasks (a) to (e) and (g) to (i).
In view of the nature of the response variable (percent of morphine bound),

explain why, strictly speaking, the assumption of homogeneity of variance cannot
hold.

Graham [1977] assayed 16 commercially available pancreatic extracts for six types
of enzyme activity. See also Example 10.6. Data for one of these enzymes, prote-
olytic activity, are presented here. The 16 products were classified by packaging form:
capsule, tablet, and enteric-coated tablets. The following data were obtained:

(a)
(b)

Proteolytic Activity (U/unit)

Tablet (n =5) 6640 4440 240 990 410
Capsule (n = 4) 6090 5840 110 195
Coated tablet (n =7) 1800 1420 980 1088 2200 870 690

Do tasks (a) to (e) and (g) to (i).

Is there a transformation that would make the variance more homogeneous? Why
is this unlikely to be the case? What is peculiar about the values for the coated
tablets?

The following data from Rifkind et al. [1976] consist of antipyrine clearance of males
suffering from B-thalassemia, a chronic type of anemia. In this disease, abnormally
thin red blood cells are produced. The treatment of the disease has undesirable side
effects, including liver damage. Antipyrine is a drug used to assess liver function with
a high clearance rate, indicating satisfactory liver function. These data deal with the
antipyrine clearance rate of 10 male subjects classified according to pubertal stage.
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10.5

The question is whether there is any significant difference in clearance rate among the
pubertal stages (I = infant; V = adult).

Pubertal Stage Clearance Rate (Half-Life in Hours)
1 7.4 5.6 3.7 6.6 6.0
v 10.9 12.2
\% 11.3 10.0 13.3

(a) Do tasks (a) to (e) and (g) to (i).
*(b) Assuming that the antipyrine clearance rate increases with age, carry out a non-
parametric test for trend (see Note 10.2). What is the alternative hypothesis in
this case?

It is known that organisms react to stress. A more recent discovery is that the immune
system’s response is altered as a function of stress. In a paper by Keller et al. [1981],
the immune response of rats as measured by the number of circulating lymphocytes
(cells per milliliter x 107°) was related to the level of stress. The following data are
taken from this paper:

Number Mean Number

Group of Rats  of Lymphocytes SE
Home-cage control 12 6.64 0.80
Apparatus control 12 4.84 0.70
Low shock 12 3.98 1.13
High shock 12 2.92 0.42

(a) Do tasks (a), (b), (e), and (j).

(b) The authors state: “a significant lymphocytopenia [F (3, 44) = 3.86, p < 0.02]
was induced by the stressful conditions.” Does your F-ratio agree with theirs?

(c) Sharpen the analysis by considering a trend in the response levels as a function
of increasing stress level.

This problem deals with the data in Table 10.8. The authors of the paper state that the
animals were matched on the basis of weight but that there was no correlation with
weight. Assume that the data are presented in the order in which the animals were
matched, that is, Y111 = 143 is matched with Y211 = 152; in general, Y} j; is matched
with Y3 k.

(a) Construct a table of differences D = Yajx — Y1 k-

(b) Carry out a one-way ANOVA on the differences; include SS,, in your table.

(¢) Interpret SS,, for these data.

(d) State your conclusions and compare them with the conclusions of Example 10.5.

(e) Relate the MS(between groups) in the one-way ANOVA to one of the MS terms
in Table 10.14. Can you identify the connection and the reason for it?

*(f) We want to correlate the Y;; observations with the Y7 observations, but the
problem is that the response level changes from day to day, which would induce

a correlation. So we will use the following “trick.” Calculate Yl.*;.k =Yk —Yij
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and correlate Yl*jk with Y2*jk' Test this correlation using a z-test with 16 —1 = 15
degrees of freedom. Why 16 — 1? There are 7 — 1 = 6 independent pairs for
day 10, 5 each for day 12, and day 14, for a total of 16. Since the observations
sum to zero already, we subtract one more degree of freedom for estimating the
correlation. If matching was not effective, this correlation should be zero.

Ross and Bras [1975] investigated the relationship between diet and length of life in
121 randomly bred rats. After 21 days of age, each rat was given a choice of several
diets ad libitum for the rest of its life. The daily food intake (g/day) was categorized
into one of six intervals, so that an equal number of rats (except for the last interval)
appeared in each interval. The response variable was life span in days. The following
data were obtained:

Mean food intake (g/day) 183 19.8 20.7 21.6 224 24.1

Food intake category 1 2 3 4 5 6
Number of rats 20 20 20 20 20 21
Mean life span (days) 733 653 630 612 600 556
Standard error 117 126 111 115 113 106

(a) Carry out tasks (a), (b), (e), and (j).
(b) Can this be thought of as a regression problem? How would the residual MS
from regression be related to the MS error of the analysis of variance?

*(c) Can you relate in detail the ANOvA procedure and the regression analysis; par-
ticularly an assessment of a nonlinear trend?

The following data from Florey et al. [1977] are the fasting serum insulin levels for
adult Jamaican females after an overnight fast:

Fasting Serum Insulin Level (WU/mL)

Age 25-34 3544 4554 5564
Number 73 97 74 53
Mean 229 26.2 22.0 23.8
SD 10.3 13.0 7.4 10.0

(a) Do tasks (a), (b), (e), and (j).

(b) Why did the authors partition the ages of the subjects into intervals? Are there
other ways of summarizing and analyzing the data? What advantages or disad-
vantages are there to your alternatives?

The assay of insulin was one of the earliest topics in bioassay. A variety of methods
have been developed over the years. In the mid-1960s an assay was developed based
on the fact that insulin stimulates glycogen synthesis in mouse diaphragm tissue, in
vitro. A paper by Wardlaw and van Belle [1964] describes the statistical aspects of this
assay. The data in this problem deal with a qualitative test for insulin activity. A pool
of 36 hemidiaphragms was collected for each day’s work and the tissues incubated in
tubes containing medium with or without insulin. Each tube contained three randomly
selected diaphragms. For parts of this problem we ignore tube effects and assume
that each treatment was based on six hemidiaphragms. Four unknown samples were
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Table 10.34 Glycogen Content Data

Test Preparation

Medium Standard Insulin
Only (0.5 mU/mL) A B C D
280 290 460 465 470 480 430 300 510 505 310 290
240 275 400 460 440 390 385 505 610 570 350 330
225 350 470 470 425 445 380 485 520 570 250 300

Source: Data adapted from Wardlaw and van Belle [1964].

10.9

10.10

assayed. Since the diaphragms synthesize glycogen in medium, a control preparation
of medium only was added as well as a standard insulin preparation. The glycogen
content (optical density in anthrone TEST x 1000) data are given in Table 10.34.

(a) Carry out tasks (a) to (e) and (g) to (i). (To simplify the arithmetic if you are
using a calculator, divide the observations by 100.)

(b) Each column in the data layout represents one tube in which the three hemidi-
aphragms were incubated so that the design of the experiment is actually hier-
archical. To assess the effect of tubes, we partition the SS, (with 30 d.f.) into
two parts: SS(between tubes within preparations) = SSgr(wp) With six degrees
of freedom (why?) and SS(within tubes) = SSwt with 24 degrees of freedom
(why?). The latter SS can be calculated by considering each tube as a treatment.
The former can then be calculated as SSgr(wp) = SS¢ — SSwr. Carry out this
analysis and test the null hypothesis that the variability between tubes within
preparations is the same as the within-tube variability.

Schizophrenia is one of the psychiatric illnesses that is thought to have a definite
physiological basis. Lake et al. [1980] assayed the concentration of norepinephrine in
the cerebrospinal fluid of patients (NE in CSF) with one of three types of schizophrenia
and controls. They reported the following means and standard errors:

Schizophrenic Group

NE in CSF Control

(pg/mL) Group  Paranoid Undifferentiated Schizoaffective
N 29 14 10 11
Mean 91 144 101 122
Standard error 6 20 11 21

Carry out tasks (a), (b), (e), and (j).

Corvilain et al. [1971] studied the role of the kidney in the catabolism (conver-
sion) of insulin by comparing the metabolic clearance rate in seven control subjects,
eight patients with chronic renal failure, and seven anephric (without kidneys) patients.
The data for this problem consist of the plasma insulin concentrations (ng/mL) at 45
and 90 min after the start of continuous infusion of labeled insulin. A low plasma con-
centration is associated with a high metabolic clearance rate, as shown in Table 10.35.

(a) Consider the plasma insulin concentration at 45 minutes. Carry out tasks (a) to
(e) and (g) to ().
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Table 10.35 Plasma Concentration Data (ng/mL)

Control Renal Failure Anephric

Patient 45 90 Patient 45 90 Patient 45 90

1 37 38 1 3.0 42 1 6.7 9.6
2 34 42 2 3.1 39 2 26 34
3 24 31 3 44 6.1 3 34 —
4 33 44 4 51 7.0 4 40 5.1
5 24 29 5 1.9 35 5 3.1 42
6 48 54 6 34 5.7 6 27 38
7 32 41 7 29 43 7 53 6.6
8 38 4.8

¢ Missing observation.

(b) Consider the plasma insulin concentration at 90 minutes. Carry out tasks (a) to
(e) and (g) to (i).

(¢) Calculate the difference in concentrations between 90 and 45 minutes for each
patient. Carry out tasks (a) to (e) and (g) to (i). Omit Patient 3 in the anephric
group.

(d) Graph the means for the three groups at 45 and 90 minutes on the same graph.
What is the overall conclusion that you draw from the three analyses? Were all
three analyses necessary? Would two of three have sufficed? Why or why not?

We return to the data of Zelazo et al. [1972] one more time. Carry out the Terpstra—
Jonckheere test for ordered alternatives as discussed in Note 10.2. Justify the use of an
ordered alternative hypothesis. Discuss in terms of power the reason that this analysis
does indicate a treatment effect, in contrast to previous analyses.

One of the problems in the study of SIDS is the lack of a good animal model. Baak
and Huber [1974] studied the guinea pig as a possible model observing the effect of
lethal histamine shock on the guinea pig thymus. The purpose was to determine if
changes in the thymus of the guinea pig correspond to pathological changes observed
in SIDS victims. In the experiment 40 animals (20 male, 20 female) were randomly
assigned either to “control” or “histamine shock.” On the basis of a Wilcoxon two-
sample test—which ignored possible gender differences—the authors concluded that
the variable medullary blood vessel surface (mm?/mm?3) did not differ significantly
between “control” and “histamine shock.” The data below have been arranged to keep
track of gender differences.

Control Histamine Shock

Female 64 62 69 69 54|84 102 62 54 55
75 61 73 59 68|73 52 51 57 98
Male 43 75 52 49 57|75 6.7 57 49 638
43 64 62 50 50|66 69 11.8 67 90

(a) Do tasks (a) to (e), (g), and (i).
(b) Replace the observations by their ranks and repeat the analysis of variance. Com-
pare your conclusions with those of part (a).
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In tumor metastasis, tumor cells spread from the original site to other organs. Usually, a
particular tumor will spread preferentially to specific organs. There are two possibilities
as to how this may occur: The tumor cells gradually adapt to the organ to which they have
spread, or tumor cells that grow well at this organ are selected preferentially. Nicolson and
Custead [1982] studied this problem by comparing the metastatic potential of melanoma
tumor cells mechanically lodged in the lungs of mice or injected intravenously and
allowed to metastasize to the lung. Each of these cell lines was then harvested and
injected subcutaneously. The numbers of pulmonary tumor colonies were recorded for
each of three treatments: original line (control), mechanical placement (adaptation), and
selection. The data in Table 10.36 were obtained in three experiments involving 84 mice.

Table 10.36 Experimental Data for Three Treatments

Number of Pulmonary Tumor Colonies

Experiment Control Adaption Selection
1 0 4 20 32 0 3 20 7 92 141
0 9 22 0 6 24 64 96 149
1 11 31 2 14 29 79 100 151
2 0 8 31 41 0 10 13 0 101 132
3 8 32 0 11 14 52 109 136
6 22 39 5 12 14 89 110 140
3 0 4 36 49 0 11 21 30 79 111
0 18 39 0 13 27 46 89 114
2 29 42 3 13 28 51 100 114

(a) Carry out tasks (a) to (g). You may want to try several transformations: for
example, «/_, Y'/4. An appropriate transformation is logarithmic. To avoid prob-
lems with zero values, use log(Y + 1).

(b) How would you interpret a significant “experiment x treatment” interaction?

A paper by Gruber [1976] evaluated interactions between two analgesic agents: feno-
profen and propoxyphene. The design of the study was factorial with respect to drug
combinations. Propoxyphene (P) was administered in doses of 0, 5, 100, and 150 mg.;
fenoprofen (F) in doses of 0, 200, 400, and 600 mg. Each combination of the two
factors was studied. In addition, postepisiotomy postpartum patients were categorized
into one of four pain classes: “little,” “some,” “lot,” and “terrible” pain; for each of the
16 medication combinations, 8, 10, 10, and 2 patients in the four pain classes were used.
The layout of the number of patients could be constructed as shown in Table 10.37.

(a) One response variable was “analgesic score” for a medication combination.
Table 10.38 is a partial ANOVA table for this variable. Fill in the lines in the
table, completing the table.

(b) The total analgesic score for the 16 sets of 30 patients classified by the two
drug levels is given in Table 10.39. Carry out a “randomized block analysis” on
these total scores dividing the sums of squares by 30 to return the analysis to a
single reading status. Link this analysis with the table in part (a). You have, in
effect, partitioned the SS for medications in that table into three parts. Test the
significance of the three mean squares.

(c) Graph the mean analgesia score (per patient) by plotting the dose on the x-axis
for fenoprofen, indicating the levels of the propoxyphene dose in the graph. State
your conclusions.
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Table 10.37 Design of Medication Combinations

Medication Combination

Pain Level (0OP,0F) (0P, 200F) e (0P, 600F) (50P,0F) (150P, 600F)
“Little” 8 8 8 8
“Some” 10 0 e 10 10 10
“Lot” 10 10 e 10 10 10
“Terrible” 2 2 2 2 2

Table 10.38 aNova Table for Analgesic Score

Source df. SS MS  F-Ratio P-Value
Pain class — 3,704 — — _
Medications = — 9,076  — — _
Interaction — 3,408 — — _
Residual — —

Total 479 41,910

Table 10.39 Total Analgesia Score

Fenoprofen Calcium Dose (mg)

Propoxyphene Dose (mg) 0 200 400 600
0 409 673 634 756

50 383 605 654 785

100 496 773 760 755

150 496 723 773 755

10.15 Although the prescription, “Take two aspirins, drink lots of fluids, and go to bed,” is
usually good advice, it is known that aspirin induces “microbleeding” in the gastroin-
testinal system, as evidenced by minute amounts of blood in the stool. Hence, there is
constant research to develop other anti-inflammatory and antipyretic (fever-combating)
agents. Arsenault et al. [1976] reported on a new agent, R-803, studying its effect in a
Latin square design, comparing it to placebo and aspirin (900 mg, q.i.d). For purposes
of this exercise the data are extracted in the form of a randomized block design. Each
subject received each of three treatments for a week. We will assume that the order
was random. The variable measured is the amount of blood lost in mL/day as measured

over a week.

Mean Blood Loss (ml/day)

Subject 1 2 3 4 5 6 7 8

9

Placebo 045 054 069 053 3.03 078 0.14 0.2
R-803 082 039 067 119 118 1.07 049 0.14
Aspirin  18.00 646 6.19 652 7.18 939 693 1.57

0.96
0.80
4.03

(a) Do tasks (a) to (e) and (g) to (i).
(b) Carry out the Tukey test for additivity. What are your conclusions?
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Table 10.40 COHb Data for Problem 10.16

No. Hours Since Beginning of Exposure

Subject 0 2 4 6 8
1 44 4.9 52 5.7 5.7
2 33 5.3 6.9 7.0 8.8
3 5.0 6.4 7.2 7.7 9.3
4 5.3 53 74 7.0 8.3
5 4.1 6.8 9.6 11.5 12.0
6 5.0 6.0 6.8 8.3 8.1
7 4.6 52 6.6 7.4 7.1

10.16 Occupational exposures to toxic substances are being investigated more and more care-
fully. Ratney et al. [1974] studied the effect of daily exposure of 180 to 200 ppm of
methylene chloride on carboxyhemoglobin (COHb) measured during the workday. The
COHD data (% COHDb) for seven subjects measured five times during the day is given
in Table 10.40.

10.17

10.18

(a)
(b)

(©
(d)
(e)
®

(®

Carry out tasks (a), (c) to (e), and (g) to (i).

Suppose that the observation for subject 3 at time 6 (Y34 = 7.7) is missing.
Estimate its value and redo the ANOVA.

Carry out the Tukey test for additivity.

Carry out the Page test for trend (see Note 10.2).

Why do the data not form a randomized block design?

Could this problem be treated by regression methods, where X = hours since
exposure and ¥ = % COHb? Why or why not?

Calculate all 10 pairwise correlations between the treatment combinations. Do
they look “reasonably close”?

Wang et al. [1976] studied the effects on sleep of four hypnotic agents and a placebo.
The preparations were: lorazepam 2 and 4 mg, and flurazepam 15 and 30 mg. Each
of 15 subjects received all five treatments in a random order in five-night units. The
analysis of variance of length of sleep is presented here.

(a)
(b)
(©)
(d)

Source df. SS MS F-Ratio  p-Value
Treatments — — 12.0 — —
Patients — — 148 — —
Residual — — 22
Total 74 —

Do task (a).

Fill in the missing values in the ANOVA table.
State your conclusions.

The article does not present any raw data or means. How satisfactory is this in
terms of clinical significance?

High blood pressure is a known risk factor for cardiovascular disease, and many drugs
are now on the market that provide symptomatic as well as therapeutic relief. One of
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Table 10.41 Blood Pressure Data (mmHg) for
Problem 10.18

Recumbent Upright
Patient  Placebo  Propranolol Placebo  Propranolol
N.F. 96 71 73 87
AC. 96 85 104 76
P.D. 92 89 83 90
JL. 97 110 101 85
G.P. 104 85 112 94
AH. 100 73 101 93
CL. 93 81 88 85

these drugs is propranolol. Hamet et al. [1973] investigated the effect of propranolol
in labile hypertension. Among the variables studied was mean blood pressure mea-
sured in mmHg (diastolic+ 1/3 pulse pressure). A placebo treatment was included in a
double-blind fashion. The blood pressure was measured in the recumbent and upright
positions. The blood pressure data is given in Table 10.41.

(a)

(b)

(c)

(d)

Assuming that the treatments are just four treatments, carry out tasks (a) to (e)
and (g) to (i) (i.e., assume a randomized block design).

The sum of squares for treatments (3 d.f.) can be additively partitioned into
three parts: SSpruG, SSposiTION, and SSprRUGxPOSITION, €ach with one degree
of freedom. To do this, construct an “interaction table” of treatment totals.

134072 N 12042 25442

SSprucs = —, T S5~ = 06057
SSposiTion = 12722 N 12722 B 25442 _ Ofsic]
14 14 28
6782 5942 6622 6102 25442
SSDRUGS xPOSITION = 7 + 1 + 7 + = " g

— SSprucs — SSposiTion = 36.57

Expand the ANova table to include these terms. (The SSposiTion = 0 is most
unusual; the raw data are as reported in the table.)

This analysis could have been carried out as a series of three paired ¢-tests
as follows: for each subject, calculate the following three quantities “ 4 + —
-, 7“4+ —+—,"and “4 — — +.” For example, for subject N.F. “++ — - =
9% +71 —-73-87 =7“+—-+—-" =9 —-71+73 —-87 = 11, and
“4+——4" =96 —71 — 73 + 87 = 39. These quantities represent effects
of position, drug treatment, and interaction, respectively, and are called contrasts
(see Chapter 12 for more details). Each contrast can be tested against zero by
means of a one-sample #-test. Carry out these z-tests. Compare the variances for
each contrast; one assumption in the analysis of variance is that these contrast
variances all estimate the same variance. How is the sum of the contrast variances
related to the SS; in the ANOVA?

Let d; be the sum of the observations associated with the pattern + + ——, dj
the sum of the observations associated with the pattern + — +—, and d3 the sum
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10.19

10.20

10.21

10.22

of the observations associated with the pattern + — —+. How is (dl2 + d22 + a’32)
related to SSTREATMENT?

Consider the data in Example 10.5. Rank all 38 observations from lowest to highest
and carry out the usual analysis of variance on these ranks. Compare your p-values
with the p-values of Table 10.14. In view of Note 10.3, does this analysis give you
some concern?

Consider the data of Table 10.16 dealing with the effectiveness of pancreatic supple-
ments on fat absorption. Rank all of the observations from 1 to 24 (i.e., ignoring both
treatment and block categories).

(a) Carry out an analysis of variance on the ranks obtained above.

(b) Compare your analysis with the analysis using the Friedman statistic. What is a
potential drawback in the analysis of part (a)?

(¢) Return to the Friedman ranks in Section 10.3.3 and carry out an analysis of vari-
ance on them. How is the Friedman statistic related to SS; of the ANOVA of
the Friedman ranks?

These data are from the same source as those in Problem 10.3. We add data for females
to generate the two-way layout shown in Table 10.42.

Table 10.42 Two-Way Layout for Problem 10.21

Antipyrine Clearance (Half-Life in Hours)

Stage 1 Stage IV Stage V
Males 74 56 37 109 113 133
6.6 6.0 122 10.0
Females 9.1 63 7.1 11.0 83
113 94 79 43

(a) Do tasks (a) to (d).
(b) Graph the data. Is there any suggestion of interaction? Of main effects?
(c) Carry out a weighted means analysis.

(d) Partition each observation into its component parts and verify that the sums of
squares are not additive.

Fuertes-de la Haba et al. [1976] measured intelligence in offspring of oral and nonoral
contraceptive users in Puerto Rico. In the early 1960s, subjects were randomly assigned
to oral conceptive use or other methods of birth control. Subsequently, mothers with
voluntary pregnancies were identified and offspring between ages 5 and 7 were admin-
istered a Spanish—Puerto Rican version of the Wechsler Intelligence Scale for Children
(WISC). Table 10.43 lists the data for boys only, taken from the article.

(a) Carry out tasks (a), (b), and (e).

(b) Do an unweighted means analysis. Interpret your findings.

(c) The age categories have obviously been “collapsed.” What effect could such a
collapsing have on the analysis? (Why introduce age as a variable since IQ is
standardized for age?)

(d) Suppose that we carried out a contingency table analysis on the cell frequencies.
What could such an analysis show?
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Table 10.43 Data for Problem 10.22

Age Groups (Years)

5 6 7-8
Oral contraceptive WISC score
n 9 18 14
Mean 81.44 88.50 76.00
SD 9.42 11.63 9.29
Other birth control WISC score
n 11 28 21
Mean 82.91 87.75 83.24
SD 10.11 10.85 9.60

Table 10.44 Data for Problem 10.23

Gender
Boys Girls
Oral contraceptive WISC score
n 41 55
Mean 82.68 86.87
SD 11.78 14.66
Other birth control WISC score
n 60 54
Mean 85.28 85.83
SD 10.55 12.22

10.23 The data in Table 10.44 are also from the article by Fuertes-de la Haba [1976] but
have been “collapsed over age” and are presented by treatment (type of contraceptive)
by gender. The response variable is, again, Wechsler 1Q score.

(a) Carry out tasks (a), (b), and (e).
(b) Do an unweighted means analysis.
(¢) Compare your conclusions with those of Problem 10.22.

10.24 This problem considers some implications of the additive model for the two-way
ANOVA as defined by equation (18) and illustrated in Example 10.4.

(a) Graph the means of Example 10.4 by using the level of the second variable for
the abscissa. Interpret the difference in the patterns.

(b) How many degrees of freedom are left for the means assuming that the model
defined by equation (18) holds?

(c) We now want to define a nonadditive model retaining the values of the «’s, B’s,
and u, equivalently, retaining the same marginal and overall means. You are free
to vary any of the cell means subject to the constraints above. Verify that you
can manipulate only four cell means. After changing the cell means, calculate
for each cell ij the quantity Y;; = u — o; — ;. What are some characteristics
of these quantities?

(d) Graph the means derived in part (c) and compare the pattern obtained with that
of Figure 10.2.
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*10.25 This problem is designed to give you some experience with algebraic manipulation. It
is not designed to teach you algebra but to provide additional insight into the mathe-
matical structure of analysis of variance models. You will want to take this medicine
in small doses.

(a) Show that equation (5) follows from the model defined by equation (4).

(b) Prove equations (6) and (7).

(¢) Prove equations (10) to (12) starting with the components of equation (5).

(d) Consider equation (17). Let ; = Y n;juij/n;., and so on. Relate ; and 8; to
wi- and ..

(e) For the two-way ANOVA model as defined by equation (21), show that SS, =
SSERROR = D _(njj — l)sizj, where sizj is the variance of the observations in cell
@, ).

(f) Derive the expected mean squares for MS, and MS,, in the fixed and random
effects models, as given in Table 10.19.
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CHAPTER 11

Association and Prediction: Multiple
Regression Analysis and Linear Models
with Multiple Predictor Variables

11.1 INTRODUCTION

We looked at the linear relationship between two variables, say X and Y, in Chapter 9. We
learned to estimate the regression line of Y on X and to test the significance of the relationship.
Summarized by the correlation coefficient, the square of the correlation coefficient is the percent
of the variability explained.

Often, we want to predict or explain the behavior of one variable in terms of more than one
variable, say k variables X1, ..., Xi. In this chapter we look at situations where ¥ may be
explained by a linear relationship with the explanatory or predictor variables X1, ... , X;. This
chapter is a generalization of Chapter 9, where only one explanatory variable was considered.
Some additional considerations will arise. With more than one potential predictor variable, it will
often be desirable to find a simple model that explains the relationship. Thus we consider how to
select a subset of predictor variables from a large number of potential predictor variables to find
a reasonable predictive equation. Multiple regression analyses, as the methods of this chapter are
called, are one of the most widely used tools in statistics. If the appropriate limitations are kept
in mind, they can be useful in understanding complex relationships. Because of the difficulty
of calculating the estimates involved, most computations of multiple regression analyses are
performed by computer. For this reason, this chapter includes examples of output from multiple
regression computer runs.

11.2 MULTIPLE REGRESSION MODEL

In this section we present the multiple regression mathematical model. We discuss the methods
of estimation and the assumptions that are needed for statistical inference. The procedures are
illustrated with two examples.

11.2.1 Linear Model

Definition 11.1. A linear equation for the variable Y in terms of X1, ..., X, is an equation
of the form

Y=a+bi X1+ -+ b Xy ey
The values of a, by, ... , by, are fixed constant values. These values are called coefficients.
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Suppose that we observe Y and want to model its behavior in terms of independent, predictor,
explanatory, or covariate variables, X1, ... , Xi. For a particular set of values of the covariates,
the Y value will not be known with certainty. As before, we model the expected value of Y for
given or known values of the X ;. Throughout this chapter, we consider the behavior of Y for
fixed, known, or observed values for the X ;. We have a multiple linear regression model if the
expected value of Y for the known X1, ..., Xj is linear. Stated more precisely:

Definition 11.2. Y has a linear regression on Xy, ..., Xy if the expected value of Y for
the known X ; values is linear in the X ; values. That is,

EY|Xy, ..., Xp) =a+B1 X1+ + B Xk )

Another way of stating this is the following. Y is equal to a linear function of the X ;, plus
an error term whose expectation is zero:

Y=oa+/X1+ -+ Xk +¢ 3)

where
E(e)=0

We use the Greek letters o and §; for the population parameter values and Latin letters a and
b; for the estimates to be described below. Analogous to definitions in Chapter 9, the number
« is called the intercept of the equation and is equal to the expected value of ¥ when all the
X j values are zero. The B; coefficients are the regression coefficients.

11.2.2 Least Squares Fit

In Chapter 9 we fitted the regression line by choosing the estimates a and b to minimize the sum
of squares of the differences between the Y values observed and those predicted or modeled.
These differences were called residuals; another way of explaining the estimates is to say that
the coefficients were chosen to minimize the sum of squares of the residual values. We use
this same approach, for the same reasons, to estimate the regression coefficients in the multiple
regression problem. Because we have more than one predictor or covariate variable and multiple
observations, the notation becomes slightly more complex. Suppose that there are n observations;
we denote the observed values of Y for the ith observation by Y; and the observed value of the
Jjth variable X; by X;;. For example, for two predictor variables we can lay out the data in the
array shown in Table 11.1.

Table 11.1 Data Layout for Two
Predictor Variables

Case Y X1 Xy
1 Y X1 X1z

Y, Xa1 X2
i Y; Xi1 Xi2
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The following definition extends the definition of least squares estimation to the multiple
regression situation.

Definition 11.3. Given data (Y;, X;1,..., Xix), i = 1, ..., n, the least squares fit of the
regression equation chooses a, by, ... , by to minimize

anm ~Y)?

i=1

where ?, =a+b1X;1 +---+ b Xir. The b; are the (sample) regression coefficients, a is the
sample intercept. The difference Y; — Y; is the ith residual.

The actual fitting is usually done by computer, since the solution by hand can be quite
tedious. Some details of the solution are presented in Note 11.1.

Example 11.1. We consider a paper by Cullen and van Belle [1975] dealing with the effect
of the amount of anesthetic agent administered during an operation. The work also examines the
degree of trauma on the immune system, as measured by the decreasing ability of lymphocytes
to transform in the presence of mitogen (a substance that enhances cell division). The variables
measured (among others) were X, the duration of anesthesia (in hours); X», the trauma factor
(see Table 11.2 for classification); and Y, the percentage depression of lymphocyte transfor-
mation following anesthesia. It is assumed that the amount of anesthetic agent administered
is directly proportional to the duration of anesthesia. The question of the influence of each of
the two predictor variables is the crucial one, which will not be answered in this section. Here
we consider the combined effect. The set of 35 patients considered for this example consisted
of those receiving general anesthesia. The basic data are reproduced in Table 11.3. The pre-
dicted values and deviations are calculated from the least squares regression equation, which
was ¥ = —2.55+1.10X + 10.38X>.

11.2.3 Assumptions for Statistical Inference

Recall that in the simple linear regression models of Chapter 9, we needed assumptions about
the distribution of the error terms before we proceeded to statistical inference, that is, before we
tested hypotheses about the regression coefficient using the F-test from the analysis of variance
table. More specifically, we assumed:

Simple Linear Regression Model Observe (X;, Y;),i =1,...,n. The model is

Yi=a+BXi+¢& 4)

Table 11.2  Classification of Surgical Trauma

0  Diagnostic or therapeutic regional anesthesia; examination
under general anesthesia

1 Joint manipulation; minor orthopedic procedures; cys-
toscopy; dilatation and curettage

2 Extremity, genitourinary, rectal, and eye procedures; hernia
repair; laparoscopy

3 Laparotomy; craniotomy; laminectomy; peripheral vascular
surgery

4 Pelvic extenteration; jejunal interposition; total cystectomy
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Table 11.3 Effect of Duration of Anesthesia (X;) and Degree of Trauma (X;) on Percentage

Depression of Lymphocyte Transformation following Anesthesia (Y)

Xi: X>: Y: Predicted Value Y-V
Patient Duration Trauma Percent Depression of Y Residual
1 4.0 3 36.7 33.0 3.7
2 6.0 3 51.3 35.2 16.1
3 1.5 2 40.8 19.9 20.9
4 4.0 2 58.3 22.6 35.7
5 2.5 2 42.2 21.0 21.2
6 3.0 2 34.6 21.5 13.1
7 3.0 2 77.8 21.5 56.3
8 2.5 2 17.2 21.0 -3.8
9 3.0 3 —38.4 31.9 —-70.3
10 3.0 3 1.0 31.9 -30.9
11 2.0 3 53.7 20.8 22.9
12 8.0 3 14.3 37.4 —23.1
13 5.0 4 65.0 44.5 20.5
14 2.0 2 5.6 20.4 —14.8
15 2.5 2 4.4 21.0 —16.6
16 2.0 2 1.6 20.4 —18.8
17 1.5 2 6.2 19.9 —13.7
18 1.0 1 12.2 8.9 33
19 3.0 3 29.9 31.9 -2.0
20 4.0 3 76.1 33.0 43.1
21 3.0 3 11.5 32.0 -20.5
22 3.0 3 19.8 31.9 —12.1
23 7.0 4 64.9 46.7 18.2
24 6.0 4 47.8 45.6 2.2
25 2.0 2 35.0 20.4 14.6
26 4.0 2 1.7 22.6 —-20.9
27 2.0 2 51.5 20.4 31.1
28 1.0 1 20.2 8.9 11.3
29 1.0 1 -9.3 8.9 —18.2
30 2.0 1 13.9 10.0 39
31 1.0 1 —-19.0 8.9 —-27.9
32 3.0 1 2.3 11.1 —13.4
33 4.0 3 41.6 33.0 8.6
34 8.0 4 18.4 47.8 —29.4
35 2.0 2 9.9 20.4 —10.5
Total 112.5 83 896.1 896.3 —0.2¢
Mean 3.21 2.37 25.60 25.60 —0.006

“Zero except for round-off error.

or

Yi = EYi|X;) + &

where the “error” terms ¢; are statistically independent of each other and all have the same

normal distribution with mean zero and variance o2; that is, &; ~ N(0, o2).

Using this model, it is possible to set up the analysis of variance table associated with the

regression line. The ANOVA table has the following form:
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Source of Degrees of
Variation Freedom (df) Sum of Squares (SS) Mean Square (MS) F-Ratio
-~ — MS
Regression 1 SSreG = Y ;(Y; — Y)? MSREG = SSREG e
MSRrEsID
~ SS
Residual n—2  SSgesip = Y,;(¥; — ¥)?> MSgesip = LSIZD
n—
Total n—1 (Y —Y;)?

The mean square for residual is an estimate of the variance o2 about the regression line. (In
this chapter we change notation slightly from that used in Chapter 9. The quantity o used here
is the variance about the regression line. This was 012 in Chapter 9.)

The F-ratio is an F-statistic having numerator and denominator degrees of freedom of 1
and n — 2, respectively. We may test the hypothesis that the variable X has linear predictive
power for Y, that is, § # 0, by using tables of critical values for the F-statistic with 1 and
n — 2 degrees of freedom. Further, using the estimate of the variance about the regression line
MSREsID, it was possible to set up confidence intervals for the regression coefficient S.

For multiple regression equations of the current chapter, the same assumptions needed in
the simple linear regression analyses carry over in a very direct fashion. More specifically, our
assumptions for the multiple regression model are the following.

Multiple Regression Model Observe (Y;, Xi1, ..., Xik),i =1,2,...,n (n observations).
The distribution of Y; for fixed or known values of X;q, ..., Xt is
Yi = E(YilXi1, ..., Xip) + & )]

where E(Y;|X;1,.... Xi) =+ Bi1Xin+ -+ BXikor Vi = a+ i1 Xit + - + B Xik + &i.
The ¢; are statistically independent and all have the same normal distribution with mean zero
and variance o2; that is, &; ~ N(0, o2).

With these assumptions, we use a computer program to find the least squares estimate of
the regression coefficients. From these estimates we have the predicted value for Y; given the
values of X;i{, ..., X;r. That is,

Yi=a+biXi+ -+ b Xu (©6)

Using these values, the ANOvA table for the one-dimensional case generalizes. The ANOVA table
in the multidimensional case is now the following:

Source of Degrees of
Variation Freedom (df) Sum of Squares (SS) Mean Square (MS) F-Ratio
s - SS MS
Regression k SSreG = Y, (Vi — Y)2 MSgiG = REG REG
sS MSRESID
Residual n—k—1 SSresp =) ;(¥i — ’)71.)2 MSRESID = RkESIDl
n—k—
Total n—1 (Y =Yy

For the ANOVA table and multiple regression model, note the following:

1. If k = 1, there is one X variable; the equations and ANOvaA table reduce to that of the
simple linear regression case.
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2. The F-statistic tests the hypothesis that the regression line has no predictive power. That
is, it tests the hypothesis
Hypy=pr=--=p=0 @)

This hypothesis says that all of the beta coefficients are zero; that is, the X variables do not
help to predict Y. The alternative hypothesis is that one or more of the regression coefficients
Bi1, ..., Bk are nonzero. Under the null hypothesis, Hy, the F-statistic, has an F-distribution with
k and n — k — 1 degrees of freedom. Under the alternative hypotheses that one or more of the §;
are nonzero, the F-statistic tends to be too large. Thus the hypothesis that the regression line has
predictive power is tested by using tables of the F'-distribution and rejection when F is too large.

3. The residual sum of squares is an estimate of the variability about the regression line;
that is, it is an estimate of o 2. Introducing notation similar to that of Chapter 9, we write

(Y — V)2

n—k—1 ®

A2 2
6° = Sy.x,... x, = MSresID =

4. Using the estimated value of o2 itis possible to find estimated standard errors for the b;,
the estimates of the regression coefficients 8;. The estimated standard error is associated with
the ¢ distribution with n — k — 1 degrees of freedom. The test of 8; = 0 and an appropriate
100(1 — )% confidence interval are given by the following equations. To test H;: B; = 0 at
significance level «, use two-sided critical values for the 7-distribution with n — k — 1 degrees
of freedom and the test statistic

bj
t= €)
SE(b;)
where b; and SE(b;) are taken from computer output. Reject H; if
|t > th—k—1,1-a/2
A 100(1 — )% confidence interval for 8; is given by
bj £ SE(bj)ty—k—1,1-a/2 (10)

These two facts follow from the pivotal variable

,_bi= b
SE(b;)

which has a ¢-distribution with n — k — 1 degrees of freedom.

5. Interpretations of the estimated coefficients in a multiple regression equation must be done
cautiously. Recall (from the simple linear regression chapter) that we used the example of height
and weight; we noted that if we managed to get the subjects to eat and/or diet to change their
weight, this would not have any substantial effect on a person’s height despite a relationship
between height and weight in the population. Similarly, when we look at the estimated multiple
regression equation, we can say that for the observed X values, the regression coefficients 8;
have the following interpretation. If all of the X variables except for one, say X ;, are kept fixed,
and if X; changes by one unit, the expected value of ¥ changes by ;. Let us consider this
statement again for emphasis. If all the X variables except for one X variable, X ;, are held
constant, and the observation has X j changed by an amount 1, the expected value of Y; changes
by the amount B;. This is seen by looking at the difference in the expected values:

A BIXi+ A B X+ D) 4 A BXp— @4+ B X+ + B Xp) = B
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This does not mean that when the regression equation is estimated, by changing X by a certain
amount we can therefore change the expected value of Y. Consider a medical example where
X j might be systolic blood pressure and other X variables are other measures of physiological
performance. Any maneuvers taken to change X; might also result in changing some or all of
the other X’s in the population. The change in Y of 8; holds for the distribution of X’s in the
population sampled. By changing the values of X; we might change the overall relationship
between the Y;’s and the X;’s, so that the estimated regression equation no longer holds.
(Recall again the height and weight example for simple linear regression.) For these reasons,
interpretations of multiple regression equations must be made tentatively, especially when the
data result from observational studies rather than controlled experiments.

6. If two variables, say X and X, are closely related, it is difficult to estimate their regres-
sion coefficients because they tend to get confused. Take the extreme case where the variables
X1 and X» are actually the same value. Then if we look at 81 X1+ 82 X> we can factor out the X
variable that is equal to X5. That is, if X; = X5, then 81 X1+ f2X2 = (B1 + B2) X1. We see that
B1 and B, are not determined uniquely in this case, but any values for 8; and B, whose sum is
the same will give the “same” regression equation. More generally, if X| and X» are very closely
associated in a linear fashion (i.e., if their correlation is large), it is very difficult to estimate the
betas. This difficulty is referred to as collinearity. We return to this fact in more depth below.

7. In Chapter 9 we saw that the assumptions of the simple linear regression model held if
the two variables X and Y have a bivariate normal distribution. This fact may be extended
to the considerations of this chapter. If the variables Y, X, ..., X; have a multivariate nor-
mal distribution, then conditionally upon knowing the values of Xy, ..., X, the assumptions
of the multiple regression model hold. Note 11.2 has more detail on the multivariate normal
distribution. We shall not go into this in detail but merely mention that if the variables have a
multivariate normal distribution, any one of the variables has a normal distribution, any two of
the variables have a bivariate normal distribution, and any linear combination of the variables
also has a normal distribution.

These generalizations of the findings for simple linear regression are illustrated in the next
section, which presents several examples of multiple regression.

11.2.4 Examples of Multiple Regression

Example 11.1. (continued) We modeled the percent depression of lymphocyte transformation
following anesthesia by using the duration of the anesthesia in hours and trauma factor. The least
squares estimates of the regression coefficients, the estimated standard errors and the ANOVA
table are given below.

Constant or Variable j b j SE(b j)
Duration of anesthesia 1.105 3.620
Trauma factor 10.376 7.460
Constant —2.555 12.395
Source d.f. SS MS F-Ratio

Regression 2 4,192.94  2,096.47 3.18
Residual 32 21,070.09 658.44

Total 34 25,263.03

From tables of the F-distribution, we see that at the 5% significance level the critical value
for 2 and 30 degrees of freedom is 3.32, while for 2 and 40 degrees of freedom it is 3.23. Thus,
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F>.32,0.95 is between 3.23 and 3.32. Since the observed F-ratio is 3.18, which is smaller at the
5% significance level, we would not reject a null hypothesis that the regression equation has
no contribution to the prediction. (Why is the double negative appropriate here?) This being
the case, it would not pay to proceed further to examine the significance of the individual
regression coefficients. (You will note that a standard error for the constant term in the regres-
sion is also given. This is also a feature of the computer output for most multiple regression
packages.)

Example 11.2. This is a continuation of Example 9.1 regarding malignant melanoma of the
skin in white males. We saw that mortality was related to latitude by a simple linear regression
equation and also to contiguity to an ocean. We now consider the modeling of the mortality
result using a multiple regression equation with both the “latitude” variable and the “contiguity
to an ocean” variable. When this is done, the following estimates result:

Constant or Variable b j SE(b j)
Latitude in degrees —5.449 0.551
Contiguity to ocean 18.681 5.079

(1 = contiguous to ocean,
0 = does not border ocean)
Constant 360.28 22.572

Source d.f. SS MS F-Ratio

Regression 2 40,366.82 20,183.41 69.96
Residual 46  13,270.45 288.49

Total 48  53,637.27

The F critical values at the 0.05 level with 2 and 40 and 2 and 60 degrees of freedom are
3.23 and 3.15, respectively. Thus the F-statistic for the regression is very highly statistically
significant. This being the case, we might then wonder whether or not the significance came
from one variable or whether both of the variables contributed to the statistical significance. We
first test the significance of the latitude variable at the 5% significance level and also construct
a 95% confidence interval. t = —5.449/0.551 = —9.89, |t| > t48,0.975 = 2.01; reject B = 0 at
the 5% significance level. The 95% confidence interval is given by —5.449 £ 2.01 x 0.551 or
(—6.56, —4.34).

Consider a test of the significance of B, at the 1% significance level and a 99% confidence
interval for . t = 18.681/5.079 = 3.68, |t| > t480995 = 2.68; reject B = 0 at the 1%
significance level. The 99% confidence interval is given by 18.6811+2.68 x5.079 or (5.07, 32.29).

In this example, from the 7 statistic we conclude that both latitude in degrees and contiguity
to the ocean contribute to the statistically significant relationship between the melanoma of the
skin mortality rates and the multiple regression equation.

Example 11.3. The data for this problem come from Problems 9.5 to 9.8. These data con-
sider maximal exercise treadmill tests for 43 active women. We consider two possible multiple
regression equations from these data. Suppose that we want to predict or explain the variability
in VO, max by using three variables: X1, the duration of the treadmill test; X, the maximum
heart rate attained during the test; and X3, the height of the subject in centimeters. Data resulting
from the least squares fit are:
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Covariate or Constant bj SE(b;) t(t39,0.975 = 2.02)
Duration (seconds) 0.0534 0.00762 7.01
Maximum heart rate (beats/min) —0.0482 0.05046 —0.95
Height (cm) 0.0199 0.08359 0.24
Constant 6.954 13.810
F-Ratio

Source d.f. SS MS (F3,39,0'95 = 2.85)

Regression 3 644.61 214.87 21.82

Residual 39 384.06 9.85

Total 42 1028.67

Note that the overall F-test is highly significant, 21.82, compared to a 5% critical value for
the F-distribution with 3 and 39 degrees of freedom of approximately 2.85. When we look at
the ¢ statistic for the three individual terms, we see that the ¢ value for duration, 7.01, is much
larger than the corresponding 0.05 critical value of 2.02. The other two variables have values for
the ¢ statistic with absolute value much less than 2.02. This raises the possibility that duration
is the only variable of the three that contributes to the predictive equation. Perhaps we should
consider a model where we predict the maximum oxygen consumption in terms of duration
rather than using all three variables. In sections to follow, we consider the question of selecting
a “best” predictive equation using a subset of a given set of potential explanatory or predictor
variables.

Example 11.3. (continued) We use the same data but consider the dependent variable to be
age. We shall try to model this from three explanatory, or independent, or predictor variables.
Let X be the duration of the treadmill test in seconds; let X, be VO, max, the maximal oxygen
consumption; and let X3 be the maximum heart rate during the treadmill test. Analysis of these
data lead to the following:

t-Statistic

Covariate or Constant b SE(b;) (t39,0.975 = 2.02)
Duration —0.0524 0.0268 —1.96
VO, max —0.633 0.378 —1.67
Maximum heart rate  —0.0884 0.119 —0.74
Constant 106.51 18.63
F -Ratio

Source df. Ss MS (F3,39,0.95 = 2.85)

Regression 3 225697 75232 13.70

Residual 39  2142.19 54.93

Total 42 4399.16

The overall F value of 13.7 is very highly statistically significant, indicating that if one has
the results of the treadmill test, including duration, VO, pmax, and maximum heart rate, one can
gain a considerable amount of knowledge about the subject’s age. Note, however, that when
we look at the p-values for the individual variables, not one of them is statistically significant!
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How can it be that the overall regression equation is very highly statistically significant but none
of the variables individually can be shown to have contributed at the 5% significance level?
This paradox results because the predictive variables are highly correlated among themselves;
they are collinear, as mentioned above. For example, we already know from Chapter 9 that the
duration and VO, max are highly correlated variables; there is much overlap in their predictive
information. We have trouble showing that the prediction comes from one or the other of the
two variables.

11.3 LINEAR ASSOCIATION: MULTIPLE AND PARTIAL CORRELATION

The simple linear regression equation was very closely associated with the correlation coefficient
between the two variables; the square of the correlation coefficient was the proportion of the
variability in one variable that could be explained by the other variable using a linear predictive
equation. In this section we consider a generalization of the correlation coefficient.

11.3.1 Multiple Correlation Coefficient

In considering simple linear regression, we saw that r> was the proportion of the variability of
the Y; about the mean that could be explained from the regression equation. We generalize this
to the case of multiple regression.

Definition 11.4. The squared multiple correlation coefficient, denoted by R2, is the propor-
tion of the variability in the dependent variable Y that may be accounted for by the multiple
regression equation. Algebraically,

,  regression sum of squares

total sum of squares

Y=Y =Y =Y 4 Y (Y =Y

R SSeea _ X% —Y) an
SStotaL Y (Y — Y)?

Since

Definition 11.5. The positive square root of R? is denoted by R, the multiple correlation
coefficient.

The multiple correlation coefficient may also be computed as the correlation between the
Y; and the estimated best linear predictor, Y;. If the data come from a multivariate sample
rather than having the X’s fixed by experimental design, the quantity R is an estimate of the
correlation between Y and the best linear predictor for Y in terms of X1, ..., X, that is, the
correlation between Y and a 4+ by X| + - - - + by Xi. The population correlation will be zero if
and only if all the regression coefficients fi, ..., B¢ are equal to zero. Again, the value of R?
is an estimate (for a multivariate sample) of the square of the correlation between Y and the
best linear predictor for ¥ in the overall population. Since the population value for R? will be
zero if and only if the multiple regression coefficients are equal to zero, a test of the statistical
significance of R? is the F-test for the regression equation. R and F are related (as given by
the definition of R? and the F test in the analysis of variance table). It is easy to show that

) kF _(n—k—DR?

=, F = 12
kF4+n—k—1 k(1 —R?) (12
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The multiple correlation coefficient thus has associated with it the same degrees of freedom
as the F distribution: k and n — k — 1. Statistical significance testing for R? is based on the
statistical significance test of the F-statistic of regression.
At significance level «, reject the null hypothesis of the no linear association between Y and
X1, ..., X if
R2> kFin—k—1,1-a
T kFrp—k—11-a+n—k—1

where Fy ,—x—1,1—« 1s the 1 — o percentile for the F-distribution with k and n — k — 1 degrees
of freedom.

For any of the examples considered above, it is easy to compute R?. Consider the last
part of Example 11.3, the active female exercise test data, where duration, VO, pmax, and the
maximal heart rate were used to “explain” the subject’s age. The value for R? is given by
2256.97/4399.16 = 0.51; that is, 51% of the variability in Y (age) is explained by the three
explanatory or predictor variables. The multiple regression coefficient, or positive square root,
is 0.72.

The multiple regression coefficient has the same limitations as the simple correlation coeffi-
cient. In particular, if the explanatory variables take values picked by an experimenter and the
variability about the regression line is constant, the value of R? may be increased by taking
a large spread among the explanatory variables X1, ..., Xx. The value for R2, or R, may be
presented when the data do not come from a multivariate sample; in this case it is an indicator
of the amount of the variability in the dependent variable explained by the covariates. It is
then necessary to remember that the values do not reflect something inherent in the relationship
between the dependent and independent variables, but rather, reflect a quantity that is subject to
change according to the value selection for the independent or explanatory variables.

Example 11.4. Gardner [1973] considered using environmental factors to explain and pre-
dict mortality. He studied the relationship between a number of socioenvironmental factors and
mortality in county boroughs of England and Wales. Rates for all sizable causes of death in the
age bracket 45 to 74 were considered separately. Four social and environmental factors were
used as independent variables in a multiple regression analysis of each death rate. The variables
included social factor score, “domestic” air pollution, latitude, and the level of water calcium.
He then examined the residuals from this regression model and considered relating the residual
variability to other environmental factors. The only factors showing sizable and consistent corre-
lation were the long-period average rainfall and latitude, with rainfall being the more significant
variable for all causes of death. When rainfall was included as a fifth regressor variable, no new
factors were seen to be important. Tables 11.4 and 11.5 give the regression coefficients, not for
the raw variables but for standardized variables.

These data were developed for 61 English county boroughs and then used to predict the values
for 12 other boroughs. In addition to taking the square of the multiple correlation coefficient for
the data used for the prediction, the correlation between observed and predicted values for the
other 12 boroughs were calculated. Table 11.5 gives the results of these data.

This example has several striking features. Note that Gardner tried to fit a variety of models.
This is often done in multiple regression analysis, and we discuss it in more detail in Section 11.8.
Also note the dramatic drop (!) in the amount of variability in the death rate that can be explained
between the data used to fit the model and the data used to predict values for other boroughs.
This may be due to several sources. First, the value of R? is always nonnegative and can only
be zero if variability in ¥ can be perfectly predicted. In general, R? tends to be too large. There
is a value called adjusted R?, which we denote by Rg, which takes this effect into account.
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Table 11.4 Multiple Regression® of Local Death Rates on Five Socioenvironmental Indices in the
County Boroughs®

Long Period

Gender/Age Social Factor “Domestic” Water Average
Group Period Score Air Pollution  Latitude  Calcium Rainfall
Males/45-64 1948-1954 0.16 0.48*** 0.10 —0.23 0.27%*
1958-1964 0.19% 0.36** 0.21** —0.24** 0.30%*
Males/65-74 1950-1954 0.24* 0.28* 0.02 —0.43%* 0.17
1958-1964 0.39%* 0.17 0.13 —0.30** 0.21
Females/45-64 ~ 1948-1954 0.16 0.20 0.32%* —0.15 0.40%*
1958-1964 0.29* 0.12 0.19 —0.22* 0.39%**
Females/65-74 ~ 1950-1954 0.39%** 0.02 036"  —0.12 0.40%**
1958-1964 0.40%* —0.05 0.29%*  —0.27** 0.29**

“A standardized partial regression coefficients given; that is, the variables are reduced to the same mean (0) and variance
(1) to allow values for the five socioenvironmental indices in each cause of death to be compared. The higher of two
coefficients is not necessarily the more significant statistically.

bxp < 0.05; **p < 0.01; ***p < 0.001.

Table 11.5 Results of Using Estimated
Multiple Regression Equations from 61
County Boroughs to Predict Death Rates in
12 Other County Boroughs

Gender/Age

Group Period R? ry

Males/45-64 1948-1954 0.80 0.12
1958-1964 0.84 0.26

Males/65-74 1950-1954 0.73 0.09

1958-1964 0.76 0.25
Females/45-64 1948-1954 0.73 0.46
1958-1964 0.72 0.48
Females/65-74 1950-1954 0.80 0.53
1958-1964 0.73 0.41

“r is the correlation coefficient in the second sample
between the value predicted for the dependent variable
and its observed value.

This estimate of the population, R?, is given by

n—1
n—k

RZ=1-(1-R? (13)
For the Gardner data on males from 45 to 64 during the time period 1948-1954, the adjusted
R? value is given by

61 —1

R2=1-(1-080)(——)=0.786
P=i-a-0s0 (G )

We see that this does not account for much of the drop. Another possible effect may be related
to the fact that Gardner tried a variety of models; in considering multiple models, one may get a
very good fit just by chance because of the many possibilities tried. The most likely explanation,
however, is that a model fitted in one environment and then used in another setting may lose much
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predictive power because variables important to one setting may not be as important in another
setting. As another possibility, there could be an important variable that is not even known by the
person analyzing the data. If this variable varies between the original data set and the new data
set, where one desires to predict, extreme drops in predictive power may occur. As a general rule
of thumb, the more complex the model, the less transportable the model is in time and/or space.
This example illustrates that whenever possible, when fitting a multivariate model including mul-
tiple linear regression models, if the model is to be used for prediction it is useful to try the model
on an independent sample. Great degradation in predictive power is not an unusual occurrence.

In one example above, we had the peculiar situation that the relationship between the depen-
dent variable age and the independent variables duration, VO; pMax, and maximal heart rate
was such that there was a very highly statistically significant relationship between the regres-
sion equation and the dependent variable, but at the 5% significance level we were not able to
demonstrate the statistical significance of the regression coefficients of any of the three inde-
pendent variables. That is, we could not demonstrate that any of the three predictor variables
actually added statistically significant information to the prediction. We mentioned that this may
occur because of high correlations between variables. This implies that they contain much of
the same predictive information. In this case, estimation of their individual contribution is very
difficult. This idea may be expressed quantitatively by examining the variance of the estimate
for a regression coefficient, say ;. This variance can be shown to be

o2

var(b;) = 7[)@](1 — RJZ)

(14)

In this formula o2 is the variance about the regression line and [x2] is the sum of the squares
of the difference between the values observed for the jth predictor variable and its mean (this
bracket notation was used in Chapter 9). R? is the square of the multiple correlation coefficient
between X ; as dependent variable and the other predictor variables as independent variables.
Note that if there is only one predictor, R? is zero; in this case the formula reduces to the formula
of Chapter 9 for simple linear regression. On the other hand, if X ; is very highly correlated with
other predictor variables, we see that the variance of the estimate of b; increases dramatically.
This again illustrates the phenomenon of collinearity. A good discussion of the problem may
be found in Mason [1975] as well as in Hocking [1976].

In certain circumstances, more than one multiple regression coefficient may be considered at
one time. It is then necessary to have notation that explicitly gives the variables used.

Definition 11.6. The multiple correlation coefficient of ¥ with the set of variables X1, ... ,
Xk is denoted by

Ryxi,....xp)

when it is necessary to explicitly show the variables used in the computation of the multiple
correlation coefficient.

11.3.2 Partial Correlation Coefficient

When two variables are related linearly, we have used the correlation coefficient as a measure
of the amount of association between the two variables. However, we might suspect that a
relationship between two variables occurred because they are both related to another variable.
For example, there may be a positive correlation between the density of hospital beds in a
geographical area and an index of air pollution. We probably would not conjecture that the
number of hospital beds increased the air pollution, although the opposite could conceivably be
true. More likely, both are more immediately related to population density in the area; thus we
might like to examine the relationship between the density of hospital beds and air pollution
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after controlling or adjusting for the population density. We have previously seen examples
where we controlled or adjusted for a variable. As one example this was done in the combining
of 2 x 2 tables, using the various strata as an adjustment. A partial correlation coefficient is
designed to measure the amount of linear relationship between two variables after adjusting for
or controlling for the effect of some set of variables. The method is appropriate when there are
linear relationships between the variables and certain model assumptions such as normality hold.

Definition 11.7. The partial correlation coefficient of X and Y adjusting for the variables
X1, ..., X is denoted by px y.x,... x,- The sample partial correlation coefficient of X and Y
adjusting for Xy, ..., Xy is denoted by rx y.x,,.. x,. The partial correlation coefficient is the
correlation of ¥ minus its best linear predictor in terms of the X ; variables with X minus its
best linear predictor in terms of the X; variables. That is, letting Y bea predicted value of Y
from multiple linear regression of ¥ on X1, ..., X} and letting X be the predicted value of X
from the multiple ligear regressign of X on Xy, ..., Xk, the partial correlation coefficient is the
correlation of X — X and Y — Y.

If all of the variables concerned have a multivariate normal distribution, the partial correlation
coefficient of X and Y adjusting for X1, ..., Xk is the correlation of X and Y conditionally upon
knowing the values of X1, ..., Xi. The conditional correlation of X and Y in this multivariate
normal case is the same for each fixed set of the values for Xi,..., Xj and is equal to the
partial correlation coefficient.

The statistical significance of the partial correlation coefficient is equivalent to testing the
statistical significance of the regression coefficient for X if a multiple regression is performed
with Y as a dependent variable with X, X1, ..., Xy as the independent or explanatory variables.
In the next section on nested hypotheses, we consider such significance testing in more detail.

Partial regression coefficients are usually estimated by computer, but there is a simple formula
for the case of three variables. Let us consider the partial correlation coefficient of X and Y
adjusting for a variable Z. In terms of the correlation coefficients for the pairs of variables, the
partial correlation coefficient in the population and its estimate from the sample are given by

PX,Y — PX,ZPY,Z
Ja =0k p =0} )
rx;y —rx,zry,z

Ja=rpa-r

PX,Y-Z =

rx\yz = (15)

We illustrate the effect of the partial correlation coefficient by the exercise data for active
females discussed above. We know that age and duration are correlated. For the data above, the
correlation coefficient is —0.68913. Let us consider how much of the linear relationship between
age and duration is left if we adjust out the effect of the oxygen consumption, VO, max, for
the same data set. The correlation coefficients for the sample are as follows:

TAGE, DURATION = —0.68913

TAGE, VO, yax = —0.65099

FDURATION, VO, yax = 0.78601

The partial correlation coefficient of age and duration adjusting VO; pmax using the equation
above is estimated by

—0.68913 — [(—0.65099)(—0.78601)]
T'AGE,DURATION-VO; pax = > —= = —0.37812
VI = (—0.65099)2][1 — (0.78601)2]
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If we consider the corresponding multiple regression problem with a dependent variable of age
and independent variables duration and VO; max, the z-statistic for duration is —2.58. The
two-sided 0.05 critical value is 2.02, while the critical value at significance level 0.01 is 2.70.
Thus, we see that the p-value for statistical significance of this partial correlation coefficient is
between 0.05 and 0.01.

11.3.3 Partial Multiple Correlation Coefficient

Occasionally, one wants to examine the linear relationship, that is, the correlation between one
variable, say Y, and a second group of variables, say Xy, ... , Xk, while adjusting or controlling
for a third set of variables, Z1, ..., Z,. If it were not for the Z; variables, we would simply use
the multiple correlation coefficient to summarize the relationship between Y and the X variables.
The approach taken is the same as for the partial correlation coefficient. First subtract out for
each variable its best linear predictor in terms of the Z;’s. From the remaining residual values
compute the multiple correlation between the Y residuals and the X residuals. More formally,
we have the following definition.

Definition 11.8. For each variable let ¥ or X j denote the least squares linear predictor

for the variable in terms of the quantities Zy, ..., Z,. The best linear predictor for a sample
results from the multiple regression of the variable on the independent variables Zi, ..., Z.
The partial multiple correlation coefficient between the variable Y and the variables X1, ..., X
adjusting for Zy, ... , Z, is the multiple correlation between the variable Y —Y and the variables
X1 -X Tyeens Xk—)? - The partial multiple correlation coefficient of Y and X1, ... , X} adjusting
for Zy, ..., Z, is denoted by

Ryx,,....x0).21,...,2,

A significance test for the partial multiple correlation coefficient is discussed in Section 11.4.
The coefficient is also called the multiple partial correlation coefficient.

114 NESTED HYPOTHESES

In the second part of Example 11.3, we saw a multiple regression equation where we could not
show the statistical significance of individual regression coefficients. This raised the possibility
of reducing the complexity of the regression equation by eliminating one or more variables from
the predictive equation. When we consider such possibilities, we are considering what is called
a nested hypothesis. In this section we discuss nested hypotheses in the multiple regression
setting. First we define nested hypotheses; we then introduce notation for nested hypotheses in
multiple regression. In addition to notation for the hypotheses, we need notation for the various
sums of squares involved. This leads to appropriate F-statistics for testing nested hypotheses.
After we understand nested hypotheses, we shall see how to construct F-tests for the partial
correlation coefficient and the partial multiple correlation coefficient. Furthermore, the ideas of
nested hypotheses are used below in stepwise regression.

Definition 11.9. One hypothesis, say hypothesis Hj, is nested within a second hypothesis,
say hypothesis H,, if whenever hypothesis H| is true, hypothesis H, is also true. That is to say,
hypothesis Hj is a special case of hypothesis H.

In our multiple regression situation most nested hypotheses will consist of specifying that
some subset of the regression coefficients B; have the value zero. For example, the larger first
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hypothesis might be Hj, as follows:

H:Y=a+pX1+ -+ B Xr+e€
€~ N(0,0%)

The smaller (nested) hypothesis H; might specify that some subset of the §’s, for example, the

last k— j betas corresponding to variables X 11, ..., Xy, are all zero. We denote this hypothesis
by Hi.
H:Y=a+p X +--+B,X;+e¢
e~ N(©,0%)
In other words, H, holds and

A more abbreviated method of stating the hypothesis is the following:

Hi: Bjr1=Bjy2="=Bc=0lp1,....Bj

To test such nested hypotheses, it will be useful to have a notation for the regression sum
of squares for any subset of independent variables in the regression equation. If variables
X1, ..., X are used as explanatory or independent variables in a multiple regression equation
for Y, we denote the regression sum of squares by

SSreG (X1, ..., X;)

We denote the residual sum of squares (i.e., the total sum of squares of the dependent variable
Y about its mean minus the regression sum of squares) by

SSReSID (X1, - -+ 5 X)

If we use more variables in a multiple regression equation, the sum of squares explained by the
regression can only increase, since one potential predictive equation would set all the regression
coefficients for the new variables equal to zero. This will almost never occur in practice if
for no other reason than the random variability of the error term allows the fitting of extra
regression coefficients to explain a little more of the variability. The increase in the regression
sum of squares, however, may be due to chance. The F-test used to test nested hypotheses looks
at the increase in the regression sum of squares and examines whether it is plausible that the
increase could occur by chance. Thus we need a notation for the increase in the regression sum
of squares. This notation follows:

SSREG(Xj+15 - -+ » Xkl X1, - .-, Xj) = SSrEG (X1, - - - » Xk) — SSReG (X1, - - -, X)

This is the sum of squares attributable to X1, ..., Xy after fitting the variables X1, ..., X;.
With this notation we may proceed to the F-test of the hypothesis that adding the last kK — j
variables does not increase the sum of squares a statistically significant amount beyond the
regression sum of squares attributable to X1, ..., Xk.

Assume a regression model with k predictor variables, X1, ... , Xi. The F-statistic for testing
the hypothesis

Hl:,Bj+1:.":ﬁk:()'ﬁl"“"gj
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is
Fo SSREG(X 41, - » Xil X1, ..., X))/ (k= )
SSRESID(X 1, ... s Xp)/(n —k —1)

Under Hj, F has an F-distribution with k — j and n — k — 1 degrees of freedom. Reject H; if
F > Fy_jn—k-1,1-a- the 1 — a percentile of the F-distribution.

The partial correlation coefficient is related to the sums of squares as follows. Let X be a
predictor variable in addition to X1, ... , X.

2 _ SSpeg(X|X1, ..., Xk)
XXX XSS ppsIn (X1, - -+ 5 Xk

16)

The sign of rx y.x,,.. x, is the same as the sign of the X regression coefficient when Y is
regressed on X, Y - X1, ..., Xx. The F-test for statistical significance of rx y.x,,.. x, uses

P SSreG (X 1X1, ..., Xi)
SSresiD (X, X1, ..., Xp)/(n —k —2)

a7

Under the null hypothesis that the partial correlation is zero (or equivalently, that fx =
0|81, ..., Bk), F has an F-distribution with 1 and n — k —2 degrees of freedom. F is sometimes
called the partial F-statistic. The t-statistic for the statistical significance of Sy is related to F' by

2
2 Px

- SE(Bx)?

Similar results hold for the partial multiple correlation coefficient. The correlation is always
positive and its square is related to the sums of squares by

SSreG (X1, .- » XklZ1, ..., Zp)
R} = 18
P&t X 21 Zp SSRESID(Z1. - . Zp) (49
The F-test for statistical significance uses the test statistic
SSReG (X1, ..., XklZ1, ..., Zy)/k (19)

F =
SSresiD (X1, ..., Xp, Z1, ..., Zp)/(n—k—p—1)

Under the null hypothesis that the population partial multiple correlation coefficient is zero, F
has an F-distribution with k and n — k — p — 1 degrees of freedom. This test is equivalent to
testing the nested multiple regression hypothesis:

H: Bx, = =px, =0Bz,,..., Bz,

Note that in each case above, the contribution to R? after adjusting for additional variables is
the increase in the regression sum of squares divided by the residual sum of squares after taking
the regression on the adjusting variables. The corresponding F-statistic has a numerator degrees
of freedom equal to the number of predictive variables added, or equivalently, the number of
additional parameters being estimated. The denominator degrees of freedom are equal to the
number of observations minus the total number of parameters estimated. The reason for the —1
in the denominator degrees of freedom in equation (19) is the estimate of the constant in the
regression equation.
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Example 11.3. (continued) We illustrate some of these ideas by returning to the 43 active
females who were exercise-tested. Let us compute the following quantities:

VO, MAX,DURATION - AGE
RZ
AGE(VO, MAX, HEART RATE) - DURATION

To examine the relationship between VO; pmax and duration adjusting for age, let duration
be the dependent or response variable. Suppose that we then run two multiple regressions: one
predicting duration using only age as the predictive variable and a second regression using
both age and VO, max as the predictive variable. These runs give the following data: for
Y = duration and X; = age:

t-statistic

Covariate or Constant bj SE(bj)  (t41,0.975 =2.02)

Age —5.208 0.855 —6.09

Constant 749.975 39.564

F -Ratio

Source d.f. SS MS (F1’41’0_95 = 4.08)
Regression of duration on age 1 119,324.47 119,324.47 37.08
Residual 41  131,935.95 3,217.95
Total 42 251,260.42

and for ¥ = duration, X = age, and X2 = VO, max:

t-statistic

Covariate or Constant bj SE®bj)  (t40,0.975 =2.09)

Age —2.327 0.901 —2.583

VO, max 9.151 1.863 4912

Constant 354.072  86.589

F -Ratio
Source d.f. SS MS (F2’40’0‘95 = 3.23)
Regression of duration on age 2 168,961.48 84,480.74 41.06
and VO, MaAX

Residual 40 82,298.94 2,057.47
Total 42 251,260.42

Using equation (16), we find the square of the partial correlation coefficient:

5 168,961.48 — 119,324.47
VO, MAX, DURATION-AGE = 131.935.95

49,637.01
131,935.95
0.376
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Since the regression coefficient for VO, max is positive (when regressed with age) having
a value of 9.151, the positive square root gives r:

VO, MAX, DURATION - AGE = ++v0.376 = 0.613

To test the statistical significance of the partial correlation coefficient, equation (17) gives

_168,961.48 — 119,324.467
T 82,298.94/(43 —1—1—-1)

=24.125

Note that tV202MAX = 24.127 = F within round-off error. As Fj 40,0.999 = 12.61, this is highly
significant (p < 0.001). In other words, the duration of the treadmill test and the maximum
oxygen consumption are significantly related even after adjustment for the subject’s age.

Now we turn to the computation and testing of the partial multiple correlation coefficient.
To use equations (18) and (19), we need to regress age on duration, and also regress age on

duration, VO, max, and the maximum heart rate. The ANOvVA tables follow. For age regressed
upon duration:

F -Ratio
Source d.f. SS MS (F1,41,0.95 = 4.08)
Regression 1 2089.18 2089.18 37.08

Residual 41 2309.98 56.34
Total 42 4399.16

and for age regressed upon duration, VO3 pmax, and maximum heart rate:

F-Ratio
Source d.f. SS MS (F3,39,0.95 = 2.85)
Regression 3 225697 75232 13.70

Residual 39 2142.19 54.93
Total 42 4399.16

From equation (18),

) 2256.97 — 2089.18
RAGE(V02 MAX, HEART RATE) - DURATION — ~ 5200 0%

2309.98
= 0.0726
and R = v R? = 0.270.
The F-test, by equation (19), is
(2256.97 — 2089.18) /2
=1.53

- 2142.19/43 -2—-1-1)

As F> 39,090 = 2.44, we have not shown statistical significance even at the 10% significance
level. In words: VO2 max and maximum heart rate have no more additional linear relationship
with age, after controlling for the duration, than would be expected by chance variability.
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11.5 REGRESSION ADJUSTMENT

A common use of regression is to make inference regarding a specific predictor of inference
from observational data. The primary explanatory variable can be a treatment, an environmental
exposure, or any other type of measured covariate. In this section we focus on the common
biomedical situation where the predictor of interest is a treatment or exposure, but the ideas
naturally generalize to any other type of explanatory factor.

In observational studies there can be many uncontrolled and unmeasured factors that are asso-
ciated with seeking or receiving treatment. A naive analysis that compares the mean response
among treated individuals to the mean response among nontreated subjects may be distorted
by an unequal distribution of additional key variables across the groups being compared. For
example, subjects that are treated surgically may have poorer function or worse pain prior
to their being identified as candidates for surgery. To evaluate the long-term effectiveness of
surgery, each patient’s functional disability one year after treatment can be measured. Simply
comparing the mean function among surgical patients to the mean function among patients
treated nonsurgically does not account for the fact that the surgical patients probably started
at a more severe level of disability than the nonsurgical subjects. When important character-
istics systematically differ between treated and untreated groups, crude comparisons tend to
distort the isolated effect of treatment. For example, the average functional disability may be
higher among surgically treated subjects compared to nonsurgically treated subjects, even though
surgery has a beneficial effect for each person treated since only the most severe cases may
be selected for surgery. Therefore, without adjusting for important predictors of the outcome
that are also associated with being given the treatment, unfair or invalid treatment comparisons
may result.

11.5.1 Causal Inference Concepts

Regression models are often used to obtain comparisons that “adjust” for the effects of other
variables. In some cases the adjustment variables are used purely to improve the precision of
estimates. This is the case when the adjustment covariates are not associated with the exposure of
interest but are good predictors of the outcome. Perhaps more commonly, regression adjustment
is used to alleviate bias due to confounding. In this section we review causal inference concepts
that allow characterization of a well-defined estimate of treatment effect, and then discuss how
regression can provide an adjusted estimate that more closely approximates the desired causal
effect.

To discuss causal inference concepts, many authors have used the potential outcomes frame-
work [Neyman, 1923; Rubin, 1974; Robins, 1986]. With any medical decision we can imagine
the outcome that would result if each possible future path were taken. However, in any single
study we can observe only one realization of an outcome per person at any given time. That is,
we can only measure a person’s response to a single observed and chosen history of treatments
and exposures. We can still envision the hypothetical, or “potential” outcome that would have
been observed had a different set of conditions occurred. An outcome that we believe could
have happened but was not actually observed is called a counterfactual outcome. For simplicity
we assume two possible exposure or treatment conditions. We define the potential outcomes as:

Y;(0): reponse for subject i at a specific measurement time
after treatment X = 0 is experienced

Yi(1): reponse for subject i at a specific measurement time
after treatment X = 1 is experienced

Given these potential outcomes, we can define the causal effect for subject i as

causal effect for subject i : A; = Y;(1) — Y;(0)
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The causal effect A; measures the difference in the outcome for subject i if they were given
treatment X = 1 vs. the outcome if they were given treatment X = 0. For a given population
of N subjects, we can define the average causal effect as

A= ZAi

i=1

z| =

The average causal effect is a useful overall summary of the treatment under study. Individual
causal effects would be useful for selecting the best intervention for a given person. In general,
we can only reliably estimate average causal effects for specific populations of subjects. Using
covariates, we may try to narrow the population such that it closely approximates the particular
persons identified for possible treatment.

There are a number of important implications associated with the potential outcomes
framework:

1. In any given study we can only observe either Y;(0) or Y;(1) and not both. We are
assuming that ¥;(0) and Y; (1) represent outcomes under different treatment schemes, and
in nature we can only realize one treatment and one subsequent outcome per subject.

2. Each subject is assumed to have an individual causal effect of treatment, A;. Thus, there
is no assumption of a single effect of treatment that is shared for all subjects.

3. Since we cannot observe Y;(0) and Y;(1), we cannot measure the individual treatment
effect A;.

Example 11.4. Table 11.6 gives a hypothetical example of potential outcomes. This
example is constructed to approximate the evaluation of surgical and nonsurgical interventions
for treatment of a herniated lumbar disk (see Keller et al. [1996] for an example). The outcome
represents a measure of functional disability on a scale of 1 to 10, where the intervention has
a beneficial effect by reducing functional disability. Here Y;(0) represents the postintervention
outcome if subject i is given a conservative nonsurgical treatment and Y;(1) represents the
postintervention outcome if subject i is treated surgically. Since only one course of treatment

Table 11.6 Hypothetical Example of Potential Outcomes and
Individual Causal Effects

Potential Potential

Outcome Causal Outcome Causal

Subject —  Effect | Subject —  Effect
i Yi(0) Yi(D) A i Yi(0) Yi(D) A
1 4.5 2.7 —1.8 11 7.5 5.1 2.3
2 3.1 1.0 -2.1 12 6.7 5.2 —1.5
3 39 2.0 -1.9 13 6.0 4.4 —1.6
4 4.3 2.2 —-2.1 14 5.6 3.2 —2.4
5 33 1.5 -1.9 15 6.5 4.0 —24
6 33 0.8 -2.5 16 7.7 6.0 —1.8
7 4.0 1.5 -2.5 17 7.1 5.1 —2.1
8 4.9 3.2 —-1.7 18 8.3 6.0 2.3
9 3.8 2.0 -1.9 19 7.0 4.6 —24
10 3.6 2.0 —-1.6 20 6.9 5.3 —1.5

Mean 5.40 339  =2.01
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is actually administered, these outcomes are conceptual and only one can actually be measured.
The data are constructed such that the effect of surgical treatment is a reduction in the outcome.
For example, the individual causal effects range from a —1.5- to a —2.5-point difference between
the outcome if treated and the outcome if untreated. The average causal effect for this group
is —2.01. To be interpreted properly, the population over which we are averaging needs to be
detailed. For example, if these subjects represent veterans over 50 years of age, then —2.01
represents the average causal effect for this specific subpopulation. The value —2.01 may not
generalize to represent the average causal effect for other populations (i.e., nonveterans, younger
subjects).

Although we cannot measure individual causal effects, we can estimate average causal effects
if the mechanism that assigns treatment status is essentially an unbiased random mechanism.
For example, if P[X; = 1| ¥;(0), Y;(1)] = P(X; = 1), the mean of a subset of observations,
Y; (1), observed for those subjects with X; = 1 will be an unbiased estimate of the mean for
the entire population if all subjects are treated. Formally, the means observed for the treatment,
X =1, and control, X = 0, groups can be written as

_ 1 Y
Y1=n—§ () 1(X; =1)

1 N
=— Y Y0 1(X; =0)
ng <
j=1

where n; = Zj 1(X; =1), np = Zj 1(X; = 0), and 1(X; = 0), 1(X; = 1) are indicator
functions denoting assignment to control and treatment, respectively. For example, if we assume
that P(X; = 1) = 1/2 and that ny = ngp = N/2, then with random allocation to treatment,

ﬂm=NﬂZYmme—m

= N/2 ZY (1-1/2

=Nan
J
=

where we define | as the mean for the population if all subjects receive treatment. A similar
argument shows that E(Y) = (o, the mean for the population if all subjects were not treated.
Essentially, we are assuming the existence of parallel and identical populations, one of which
is treated and one of which is untreated, and sample means from each population under simple
random sampling are obtained.

Under random allocation of treatment and control status, the observed means Y and Y are
unbiased estimates of population means. This implies that the sample means can be used to
estimate the average causal effect of treatment:

EY1-Yo) =EY))—EY))

= {1 — Mo
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Example 11.5. An example of the data observed from a hypothetical randomized study
that compares surgical (X = 1) to nonsurgical (X = 0) interventions is presented in Table 11.7.
Notice that for each subject, only one of ¥;(0) or ¥;(1) is observed, and therefore a treatment vs.
control comparison can only be calculated using the group averages rather than using individual
potential outcomes. Since the study was randomized, the difference in the averages observed is a
valid (unbiased) estimate of the average causal effect of surgery. The mean difference observed
in this experimental realization is —1.94, which approximates the unobservable target value
of A = —2.01 shown in Table 11.6. In this example the key random variable is the treatment
assignment, and because the study was randomized, the distribution for the treatment assignment
indicator, X; = 0/1, is completely known and independent of the potential outcomes.

Often, inference regarding the benefit of treatment is based on observational data where the
assignment to X = 0 or X = 1 is not controlled by the investigator. Consequently, the factors

Table 11.7 Example of Data that would Be
Observed in a Randomized Treatment Trial

Outcome
Subject M
i Assignment  Y;(0)  Y;(1) Difference
1 0 4.5
2 1 1.0
3 1 2.0
4 1 2.2
5 0 33
6 1 0.8
7 1 1.5
8 0 4.9
9 0 3.8
10 0 3.6
11 1 5.1
12 0 6.7
13 0 6.0
14 0 5.6
15 0 6.5
16 1 6.0
17 1 5.1
18 0 8.3
19 1 4.6
20 1 5.3

Mean 5.48 3.42 —1.94
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that drive treatment assignment need to be considered if causal inference is to be attempted.
If sufficient covariate information is collected, regression methods can be used to control for
confounding.

Definition 11.10. Confounding refers to the presence of an additional factor, Z, which
when not accounted for leads to an association between treatment, X, and outcome, Y, that
does not reflect a causal effect. Confounding is ultimately a “confusion” of the effects of X and
Z. For a variable Z to be a confounder, it must be associated with X in the population, be a
predictor of Y in the control (X = 0) group, and not be a consequence of either X or Y.

This definition indicates that confounding is a form of selection bias leading to biased esti-
mates of the effect of treatment or exposure (see Rothman and Greenland [1998, Chap. 8] for
a thorough discussion of confounding and for specific criteria for the identification of a con-
founding factor). Using the potential outcomes framework allows identification of the research
goal: estimating the average causal effect, A. When confounding is present, the expected differ-
ence between Y| and Y is no longer equal to the desired average causal effect, and additional
analytical approaches are required to obtain approximate causal effects.

Example 11.6. Table 11.8 gives an example of observational data where subjects in stratum
2 are more likely to be treated surgically than subjects in stratum 1. The strata represent a
baseline assessment of the severity of functional disability. In many settings those subjects
with more severe disease or symptoms are treated with more aggressive interventions, such as
surgery. Notice that both potential outcomes, Y;(0) and Y; (1), tend to be lower for subjects in
stratum 1 than for subjects in stratum 2. Despite the fact that subjects in stratum 1 are much
less likely to actually receive surgical intervention, treatment with surgery remains a beneficial
intervention for both strata 1 and 2 subjects. The benefit of treatment for all subjects is apparent
in the negative individual causal effects shown in Table 11.6. The imbalanced allocation of more
severe cases to surgical treatment leads to crude summaries of Y =4.46 and Yy = 4.32. Thus
the subjects who receive surgery have a slightly higher posttreatment mean functional score
than those subjects who do not receive surgery. Does this comparison indicate the absence of
a causal effect of surgery? The overall comparison is based on a treated group that has 80%
of subjects drawn from stratum 2, the more severe group, while the control group has only
20% of subjects from stratum 2. The crude comparison of Y| to Y is roughly a comparison
of the posttreatment functional scores among severe subjects (80% of the X = 1 group) to
the posttreatment functional scores among less severe subjects (80% of the X = O group). It
is “unfair” to attribute the crude difference between treatment groups solely to the effect of
surgery since the groups are clearly not comparable. A mixing of the effect of surgery with the
effect of baseline severity is an illustration of bias due to confounding. The observed difference
Y1 — Yo = 0.14 is a distorted estimate of the average causal effect, A =-201.

11.5.2 Adjustment for Measured Confounders

There are several statistical methods that can be used to adjust for measured confounders. The
goal of adjustment is to obtain an estimate of the treatment effect that more closely approximates
the average causal effect. Commonly used methods include:

1. Stratified methods. In stratified methods the sample is broken into strata, k = 1,2,... , K,

based on the value of a covariate, Z. Within each stratum, k, a treatment comparison can be

calculated. Let §® = ?ﬁk) —?g(), where ?ﬁk) is the mean among treated subjects in strata k, and

(k) . . . .
Y(() ) is the mean among control subjects in strata k. An overall summary of the stratum-specific
treatment contrasts can be computed using a simple or weighted average of the stratum-specific

comparisons, § = Z,f;l wy -8WK) | where wy, is a weight. In the example presented in Table 11.8
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Table 11.8 Example of an Observational Study Where Factors
That Are Associated with the Potential Qutcomes Are Predictive of
the Treatment Assignment

Outcome
Subject Observed
i Assignment  Y;(0) Y;(1) Stratum  Difference
1 1 2.7 1
2 0 3.1 1
3 0 3.9 1
4 1 2.2 1
5 0 3.3 1
6 0 3.3 1
7 0 4.0 1
8 0 4.9 1
9 0 3.8 1
10 0 3.6 1
Mean 3.74 2.45 —-1.29
11 1 5.1 2
12 1 52 2
13 1 4.4 2
14 0 5.6 2
15 1 4.0 2
16 0 7.7 2
17 1 5.1 2
18 1 6.0 2
19 1 4.6 2
20 1 53 2
Mean 6.65 4.96 —1.69
Overall mean 4.32 4.46 0.14
the subjects are separated into two strata, and mean differences of §()) = —1.29 and §© = —1.69
are obtained comparing treatment and controls within strata l_and strata 2, respectively. These
estimates are much closer to the true average causal effect of A = —2.01 in Table 11.6 than the

comparison of crude means, Y, —Yy=0.14.

2. Regression analysis. Regression methods extend the concept of stratification to allow
use with continuously measured adjustment variables and with multiple predictor variables. A
regression model

EY|X,Z)=a+ X+ BZ

can be used to obtain an estimate of treatment, X, that adjusts for the covariate Z. Using the
regression model, we have

BIl=EY |X=1,Z=20—-EY|X=0,Z=2)

indicating that the parameter f; represents the average or common treatment comparison formed
within groups determined by the value of the covariate, Z = z.

3. Propensity score methods. Propensity score methods are discussed by Rosenbaum and
Rubin [1983]. In this approach the propensity score, P(X = 1| Z), is estimated using logistic
regression or discriminant analysis, and then used either as a stratifying factor, a covariate in
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regression, or a matching factor (see Little and Rubin [2000] and the references therein for
further detail on use of the propensity score for adjustment).

The key assumption that is required for causal inference is the “no unmeasured confounding”
assumption. This states that for fixed values of a covariate, Z; (this may be multiple covariates),
the assignment to treatment, X; = 1, or control, X; = 0, is unrelated to the potential outcomes.
This assumption can be stated as

P[X; =1]Y:(0),Y;(1), Z;]= P[X; =1 Z;]

One difficult aspect of this concept is the fact that we view potential outcomes as being measured
after the treatment is given, so how can the potential outcomes predict treatment assignment? An
association can be induced by another variable, such as Z;. For example, in the surgical example
presented in Table 11.8, an association between potential outcomes and treatment assignment is
induced by the baseline severity. The probability that a subject is assigned X; = 1 is predicted
by baseline disease severity, and the potential outcomes are associated with the baseline status.
Thus, if we ignore baseline severity, treatment assignment X; is associated with both Y¥;(0) and
Y;(1). The goal of collecting covariates Z; is to measure sufficient predictors of treatment such
that within the strata defined by Z;, the treatment assignment is approximately randomized.
A causal interpretation for effects formed using observational data requires the assumption
that there is no unmeasured confounding within any strata. This assumption cannot be verified
empirically.

Example 11.1. (continued) We return to the data from Cullen and van Belle [1975]. We
use the response variable DMPA, the disintegrations per minute of lymphocytes measured after
surgery. We focus on the effect of anesthesia used for the surgery: X = 0 for general anesthesia
and X = 1 for local anesthesia. The following crude analysis uses a regression of DMPA on
anesthesia (X), which is equivalent to the two-sample ¢-test:

Coefficient SE t p-Value

Intercept 109.03 1144 953 <0.001
Anesthesia 38.00 15.48 2.45 0.016

The analysis suggests that local anesthesia leads to a mean DMPA that is 38.00 units greater
than the mean DMPA when general anesthesia is used. This difference is statistically significant
with p-value 0.016.

Recall that these data are comprised of patients undergoing a variety of surgical procedures
that are broadly classified using the variable TRAUMA, whose values O to 4 were introduced in
Table 11.2. The type of anesthesia that is used varies by procedure type and therefore TRAUMA, as
shown in Table 11.9. From this table we see that use of local anesthesia occurs more frequently
for TRAUMA 0, 1, or 2, and that general anesthesia is used more frequently for TRAUMA 3 or
4. In addition, in earlier analyses we have found TRAUMA to be associated with the outcome.
Thus, the crude analysis of anesthesia that estimates a 38.00 unit (S.E. = 15.48) effect of local
anesthesia is confounded by TRAUMA and does not reflect an average causal effect. To adjust for
TRAUMA, we use regression with the indicator variables, TRAUMA(j) = 1 if TRAUMA = j and
0 otherwise, for j = 1, 2,3, 4. We use a model that includes an intercept and therefore do not
also include an indicator for TRAUMA 0. The regression results are shown in Table 11.10.

After controlling for TRAUMA, the estimated comparison of local to general anesthesia within
TRAUMA groups is 23.47 (S.E. = 18.24), and this difference is no longer statistically significant.
This example shows that for causal analysis of observational data, any factors that are associated
with treatment and associated with the outcome need to be considered in the analysis. In order
to use 23.47 as the average causal effect of anesthesia, we would need to justify the required
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Table 11.9  Anesthesia Use by Type
of TRAUMA

Anesthesia

TRAUMA 0 = General 1 = Local Total

0 0 11 11
1 6 12 18
2 14 16 30
3 11 3 14
4 4 0 4
Total 35 42 77

Table 11.10 Regression Results with Anesthesia and
Trauma Predictors

Coefficient SE t p-Value
Intercept 129.53 27.40 473  <0.001
Anesthesia 23.47 18.24 1.29 0.202
TRAUMA 1 3.66 26.66 0.14 0.891
TRAUMA 2 —13.68 25.38 —0.54 0.592
TRAUMA 3 —25.34 30.86 —0.82 0414
TRAUMA 4 —67.28 43.60 —1.54 0.127

assumption of no additional measured or unmeasured confounding factors. The assumption of
no unmeasured confounding can only be supported by substantive considerations specific to the
study design and the scientific process under investigation. Finally, since there are no empirical
contrasts comparing local to general anesthesia within the TRAUMA 0 and TRAUMA 4 strata, we
would need to either consider the average causal effect as only pertaining to the TRAUMA 1, 2,
and 3 groups, or be willing to extrapolate to the TRAUMA 0 and 4 groups.

11.5.3 Model Selection Issues

One of the most difficult and controversial issues regarding the use of regression models is
the procedure for specifying which variables are to be used to control for confounding. The
epidemiological and biostatistical literature has introduced and evaluated several schemes for
choosing adjustment variables. In the next section we discuss methods that can be used to identify
a parsimonious explanatory or predictive model. However, the motivation for selecting covariates
to control for confounding is different from the goal of identifying a good predictive model.
To control for confounding, we identify adjustment variables in order to remove bias in the
regression estimate for a predictor of primary interest, typically a treatment or exposure variable.

Pocock et al. [2002] discuss covariate choice issues in the analysis of data from clinical trials.
The authors note that post hoc choice of covariates may not be done objectively and thus leads
to estimates that reflect the investigators bias (e.g., choose to control for a variable if it makes
the effect estimate larger!). In addition, simulation studies have shown that popular automatic
variable-selection schemes can lead to biased estimates and distorted significance levels [Mickey
and Greenland, 1989; Maldonado and Greenland, 1993; Sun et al., 1996; Hurvich and Tsai, 1990].

Kleinbaum [1994] discusses the a priori specification of the covariates to be used for
regression analysis. The main message is that substantive considerations should drive the
specification of the regression model when confirmatory estimation and inference are desired.
This position is also supported by Raab et al. [2000].
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11.5.4 Further Reading

Little and Rubin [2000] provide a comprehensive review of causal inference concepts. These
authors also discuss the importance of the stable unit treatment assumption that is required for
causal inference.

An overview of causal inference and discussion of the use of graphs for representing causal
relationships are given in the text by Pearl [2000].

11.6 SELECTING A “BEST” SUBSET OF EXPLANATORY VARIABLES

11.6.1 The Problem

Given a large number of potential explanatory variables, one can sometimes select a smaller
subset that explains the variability in the dependent variable. We have seen examples above
where it appears that one or more of the variables in a multiple regression do not contribute,
beyond an amount consistent with chance, to the explanation of the variability in the dependent
variable. Thus, consider a response variable Y with a large number of potential predictor variables
X j. How should we choose a “best” subset of variables to explain the Y variability? This topic
is addressed in this section. If we knew the number of predictor variables we wanted, we could
use some criterion for the best subset. One natural criterion from the concepts already presented
would be to choose the subset that gives the largest value for R2. Even then, selection of the
subset can be a formidable task. For example, suppose that there are 30 predictor variables and
a subset of 10 variables is wanted; there are

30
( 10 ) = 30,045,015

possible regression equations that have 10 predictor variables. This is not a routinely manageable
number even with modern high-speed computers. Furthermore, in many instances we will not
know how many possible variables we should place into our prediction equation. If we consider
all possible subsets of 30 variables, there are over 1 billion possible combinations for the
prediction. Thus once again, one cannot examine all subsets. There has been much theoretical
work on selecting the best subset according to some criteria; the algorithms allow one to find
the best subset without looking explicitly at all of the possible subsets. Still, for large numbers
of variables, we need another procedure to select the predictive subset.

A further complication arises when we have a very large number of observations; then we
may be able to show statistically that all of the potential predictor variables contribute additional
information to explain the variability in the dependent variable Y. However, the large majority of
the predictor variables may add so little to the explanation that we would prefer a much smaller
subset that explains almost as much of the variability and gives a much simpler model. In general,
simple models are desirable because they may be used more readily, and often when applied in
a different setting, turn out to be more accurate than a model with a large number of variables.

In summary, the task before us in this section is to consider a means of choosing a subset
of predictor variables from a pool of potential predictor variables.

11.6.2 Approaches to the Problem That Consider All Possible Subsets of Explanatory
Variables

We discuss two approaches and then apply both approaches to an example. The first approach
is based on the following idea: If we have the appropriate predictive variables in a multiple
regression equation, plus possibly some other variables that have no predictive power, then the
residual mean square for the model will estimate 2 the variability about the true regression line.
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On the other hand, if we do not contain enough predictive variables, the residual mean square
will contain additional variability due to the poor multiple regression fit and will tend to be too
large. We want to use this fact to allow us to get some idea of the number of variables needed in
the model. We do this in the following way. Suppose that we consider all possible predictions
for some fixed number, say p, of the total possible number of predictor variables. Suppose that
the correct predictive equation has a much smaller number of variables than p. Then when we
look at all of the different subsets of p predictor variables, most of them will contain the correct
variables for the predictive equation plus other variables that are not needed. In this case, the
mean square residual will be an estimate of o2. If we average all of the mean square residuals for
the equations with p variables, since most of them will contain the correct predictive variables,
we should get an estimate fairly close to o2. We examine the mean square residuals by plotting
the average mean square residuals for all the regression equations using p variables vs. p. As
p becomes large, this average value should tend to level off at the true residual variability. By
drawing a horizontal line at approximately the value where things average out, we can get some
idea of the residual variability. We would then search for a simple model that has approximately
this asymptotic estimate of o2. That is, we expect a picture such as Figure 11.1.

The second approach, due to C. L. Mallows, is called Mallow’s C, statistic. In this case,
let p equal the number of predictive variables in the model, plus one. This is a change from
the preceding paragraph, where p was the number of predictive variables. The switch to this
notation is made because in the literature for Mallow’s C,, this is the value used. The statistic
is as follows:

Cp(model with p — 1 explanatory variables)

SSRrEsID (Model)

= : - - — (N —2p)
MSRgesip (using all possible predictors)

where MSgrgsip (using all possible predictors) is the residual mean square when the dependent
variable Y is regressed on all possible independent predictors; SSresip (model) is the residual
sum of squares for the possible model being considered (this model uses p — 1 explanatory
variables), N is the total number of observations, and p is the number of explanatory variables
in the model plus one.

To use Mallow’s C),, we compute the value of C, for each possible subset of explanatory
variables. The points (C), p) are then plotted for each possible model. The following facts about
the C), statistics are true:

1. If the model fits, the expected value for each C), is approximately p.

2. If Cp is larger than p, the difference, C,, — p, gives approximately the amount of bias
in the sum of squares involved in the estimation. The bias occurs because the estimating
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Figure 11.1 Average residual mean square as a function of the number of predictive variables.
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predictive equation is not the true equation and thus estimates something other than the
correct Y value.

w

The value of C), itself gives an overall estimate of the sum of the squares of the average
difference between correct Y values and the Y values predicted from the model. This
difference is composed of two parts, one part due to bias because the estimating equation
is not correct (and cannot be correct if the wrong variables are included), and a second
part because of variability in the estimate. If the expected value of ¥ may be modeled by
a few variables, there is a cost to adding more variables to the estimation procedure. In
this case, statistical noise enters into the estimation of the additional variables, so that by
using the more complex estimated predictive equation, future predictions would be off by
more.

4. Thus what we would like to look for in our plot is a value C, that is close to the 45° line,
Cp, = p. Such a value would have a low bias. Further, we would like the value of C),
itself to be small, so that the total error sum of squares is not large. The nicest possible
case occurs when we can more or less satisfy both demands at the same time.

S. If we have to choose between a Cp, value, which is close to p, or one that is smaller
but above p, we are choosing between an equation that has a small bias (when C), = p)
but in further prediction is likely to have a larger predictive error, and a second equation
(the smaller value for C},) which in the future prediction is more likely to be close to the
true value but where we think that the estimated predictive equation is probably biased.
Depending on the use of the model, the trade-off between these two ills may or may not
be clearcut.

Example 11.1. (continued) 1In this example we return to the data of Cullen and van Belle
[1975]. We shall consider the response variable, DPMA, which is the disintegrations per minute
of lymphocytes after the surgery. The viability of the lymphocytes was measured in terms of
the uptake of nutrients that were labeled radioactively. A large number of disintegrations per
minute suggests a high cell division rate, and thus active lymphocytes. The potential predictive
variables for explaining the variability in DPMA are trauma factor (as discussed previously),
duration (as discussed previously), the disintegrations per minute before the surgery, labeled
DPMB, and the lymphocyte count in thousands per cubic millimeter before the surgery, LYMPHB,
as well as the lymphocyte count in thousands per cubic millimeter after the surgery, LYMPHA.
Let these variables have the following labels: ¥ = DPMA; X| = DURATION; X7 = TRAUMA;
X3 = DPMB; X4 = LYMPHB; X5 = LYMPHA.

Table 11.11 presents the results for the 32 possible regression runs using subsets of the five
predictor variables. For each run the value of p, C, the residual mean square, the average
residual mean square for runs with the same number of variables, the multiple R?, and the
adjusted R, Rg, are presented. For a given number of variables, the entries are ordered in terms
of increasing values of C,. Note several things in Table 11.11. For a fixed number, p — 1, of
predictor variables, if we look at the values for C), the residual mean square, R?, and R2, we see
that as C), increases, the residual mean square increases while R? and Rﬁ decrease. This relation-
ship is a mathematical fact. Thus, if we know how many predictor variables, p, we want in our
equation, any of the following six criteria for the best subset of predictor variables are equivalent:

1
2
3

Pick the predictive equation with a minimum value of C.

.

Pick the predictive equation with the minimum value of the residual mean square.

Pick the predictive equation with the maximum value of the multiple correlation coeffi-
cient, RZ.

4. Pick the predictive equation with the maximum value of the adjusted multiple correlation
coefficient, Rﬁ.

5. Pick the predictive equation with a maximum sum of squares due to regression.
6. Pick the predictive equation with the minimum sum of squares for the residual variability.
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Table 11.11 Results from the 32 Regression Runs on the Anesthesia Data of Cullen and van Belle
[1975]

Numbers of
Explanatory Variables Residual Residual Average
in Predictive Equation p Cp Mean Square Mean Square R? R,%
None 1 60.75 4047 4047 0 0
3 2 5.98 1645 0.606 0.594
1 49.45 3578 0.142 0.116
2 57.12 3919 3476 0.060 0.032
4 60.48 4069 0.024  —0.005
5 62.70 4168 0.000+ —0.030
2,3 3 2.48 1444 0.664 0.643
1,3 2.82 1459 0.661 0.639
35 6.26 1617 0.624 0.600
34 6.91 1647 0.617 0.593
1.4 48.37 3549 2922 0.175 0.123
1,2 51.06 3672 0.146 0.093
1,5 51.43 3689 0.142 0.088
24 56.32 3914 0.090 0.033
2,5 59.10 4041 0.060 0.001
4,5 62.39 4192 0.024  —0.036
2,34 4 3.03 1422 0.680 0.648
1,34 3.32 1435 0.677 0.645
13,5 3.36 1438 0.676 0.645
23,5 3.52 1445 0.674 0.643
1,23 3.96 1466 2396 0.670 0.639
34,5 7.88 1651 0.628 0.592
1,24 50.03 3647 0.178 0.099
1,4,5 50.15 3653 0.177 0.097
1,2,5 52.98 3787 0.146 0.064
24,5 57.75 4013 0.096 0.008
1,234 5 4.44 1440 0.686 0.644
1,3,4,5 4.64 1450 0.684 0.642
2,345 4.69 1453 1913 0.683 0.641
1,2,3,5 4.83 1460 0.682 0.640
1,2,4,5 51.91 3763 0.180 0.070
1,2,3,4,5 6 6 1468 1468 0.691 0.637

The C, data are more easily assimilated if we plot them. Figure 11.2 is a C), plot for these
data. The line C), = p is drawn for reference. Recall that points near this line have little bias in
terms of the fit of the model; for points above this line we have biased estimates of the regression
equation. We see that there are a number of models that have little bias. All things being equal,
we prefer as small a C), value as possible, since this is an estimate of the amount of variability
between the true values and predicted values, which takes into account two components, the bias
in the estimate of the regression line as well as the residual variability due to estimation. For
this plot we are in the fortunate position of the lowest C,, value showing no bias. In addition, a
minimal number of variables are involved. This point is circled, and going back to Table 11.11,
corresponds to a model with p = 3, that is, two predictor variables. They are variables 2 and
3, the TRAUMA variable, and DPMB, the lymphocyte count in thousands per cubic millimeters
before the surgery. This is the model we would select using Mallow’s C), approach.

We now turn to the average residual mean square plot to see if that would help us to decide
how many variables to use. Figure 11.3 gives this plot. We can see that this plot does not level
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out but decreases until we have five variables. Thus this plot does not help us to decide on
the number of variables we might consider in the final equation. If we look at Table 11.11,
we can see why this happens. Since the final model has two predictive variables, even with
three variables, many of the subsets, namely four, do not include the most predictive variable,
variable 3, and thus have very large mean squares. We have not considered enough variables in
the model above and beyond the final model for the curve to level out. With a relatively small
number of potential predictor variables, five in this model, the average residual mean square
plot is usually not useful.

Suppose that we have too many predictor variables to consider all combinations; or suppose
that we are worried about the problem of looking at the huge number of possible combinations
because we feel that the multiple comparisons may allow random variability to have too much
effect. In this case, how might we proceed? In the next section we discuss one approach to this
problem.

11.6.3 Stepwise Procedures

In this section we consider building a multiple regression model variable by variable.

Step 1

Suppose that we have a dependent variable Y and a set of potential predictor variables, X;,
and that we try to explain the variability in ¥ by choosing only one of the predictor variables.
Which would we want? It is natural to choose the variable that has the largest squared correlation
with the dependent variable Y. Because of the relationships among the sums of squares, this is
equivalent to the following step.

Step 2

1. Choose i to maximize r)z,. X
2. Choose i to maximize SSrgg(X;).
3. Choose i to minimize SSrgsip(X;).

By renumbering our variables if necessary, we can assume that the variable we picked was
X1. Now suppose that we want to add one more variable, say X;, to X, to give us as much
predictive power as possible. Which variable shall we add? Again we would like to maximize
the correlation between Y and the predicted value of Y, Y; equivalently, we would like to
maximize the multiple correlation coefficient squared. Because of the relationships among the
sums of squares, this is equivalent to any of the following at this next step.

Step 3
X1 is in the model; we now find X; (i # 1).

. . . 2
. Choose i to maximize RY(X.,X,-)'
. Choose i to maximize r)z,. XX,
. Choose i to maximize SSrgg (X1, X;).
. Choose i to maximize SSrgg(X;|X1).

N B W N =

. Choose i to minimize SSresip (X1, X;).

Our stepwise regression proceeds in this manner. Suppose that j variables have entered.
By renumbering our variables if necessary, we can assume without loss of generality that the
variables that have entered the predictive equation are X1, ..., X;. If we are to add one more



SELECTING A “BEST” SUBSET OF EXPLANATORY VARIABLES 461

variable to the predictive equation, which variable might we add? As before, we would like to
add the variable that makes the correlation between Y and the predictor variables as large as
possible. Again, because of the relationships between the sums of squares, this is equivalent to
any of the following:

Step j+1
X1,..., X are in the model; we want X;(i # 1, ..., j).

. . . 2
Choose i to maximize RY(X],...,X]’,X[)'

. . . 2
Choose i to maximize TV X, X X}

1.

2.

3. Choose i to maximize SSReG(X1, ..., X, X;).
4. Choose i to maximize SSReG(X;|X1,..., X ).
5. Choose i to minimize SSgresip (X1, ..., X, X;).

If we continue in this manner, eventually we will use all of the potential predictor variables.
Recall that our motivation was to select a simple model. Thus we would like a small model,;
this means that we would like to stop at some step before we have included all of our potential
predictor variables. How long shall we go on including predictor variables in this model? There
are several mechanisms for stopping. We present the most widely used stopping rule. We would
not like to add a new variable if we cannot show statistically that it adds to the predictive power.
That is, if in the presence of the other variables already in the model, there is no statistically
significant relationship between the response variable and the next variable to be added, we
will stop adding new predictor variables. Thus, the most common method of stopping is to
test the significance of the partial correlation of the next variable and the response variable
Y after adjusting for the variables entered previously. We use the partial F-test as discussed
above. Commonly, the procedure is stopped when the p-value for the F level is greater than
some fixed level; often, the fixed level is taken to be 0.05. This is equivalent to testing the
statistical significance of the partial correlation coefficient. The partial F-statistic in the context
of regression analysis is also often called the F' to enter, since the value of F, or equivalently
its p-value, is used as a criteria for entering the equation.

Since the F-statistic always has numerator degrees of freedom 1 and denominator degrees
of freedom n — j — 2, and n is usually much larger than j, the appropriate critical value is
effectively the F critical value with 1 and oo degrees of freedom. For this reason, rather than
using a p-value, often the entry criterion is to enter variables as long as the F-statistic itself is
greater than some fixed amount.

Summarizing, we stop when:

1. The p-value for r}z, Xi X X, is greater than a fixed level.

2. The partial F-statistic
SSreG (Xi|X1, ..., X;)

SSRreEsD (X1, ..., X, Xi)/(n —j—2)

is less than some specified value, or its p-value is greater than some fixed level.
All of this is summarized in Table 11.12; we illustrate by an example.

Example 11.3. (continued) Consider the active female exercise data used above. We shall
perform a stepwise regression with VO, max as the dependent variable and DURATION, MAXIMUM
HEART RATE, AGE, HEIGHT, and WEIGHT as potential independent variables. Table 11.13 contains
a portion of the BMDP computer output for this run.
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Table 11.13 Stepwise Multiple Linear Regression for the Data of Example 11.3
STEP NO. 0

STD. ERROR OF EST. 4.9489

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE
RESIDUAL  1028.6670 42 24.49208

VARIABLES IN EQUATION FOR VO2MAX
STD. ERROR STD REG F
VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL
(Y-INTERCEPT 29.05349)

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL
DUR 1 0.78601 1.00000 66.28 1
HR 3 0.33729 1.00000 5.26 1
AGE 4 —0.65099 1.00000 30.15 1
HT 5 —0.29942 1.00000 4.04 1
WT 6 —0.12618 1.00000 0.66 1
STEP NO. 1

VARIABLE ENTERED 1 DUR

MULTIPLE R 0.7860
MULTIPLE R-SQUARE 0.6178
ADJUSTED R-SQUARE 0.6085
STD. ERROR OF EST. 3.0966

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO
REGRESSION 635.51730 1 635.5173 66.28
RESIDUAL 393.15010 41 9.589027

VARIABLES IN EQUATION FOR VO2MAX

STD. ERROR STD REG F
VARIABLE COEFFICIENT OF COEFF  COEFF TOLERANCE TO REMOVE LEVEL
(Y-INTERCEPT 3.15880)

DUR 1 0.05029 0.0062 0.786 1.00000 66.28 1
VARIABLES NOT IN EQUATION
PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL

HR 3 —0.14731 0.72170 0.89 1

AGE 4 —0.24403 0.52510 2.53 1

HT 5 0.01597 0.86364 0.01 1

WT 6 —0.32457 0.99123 4.71 1

(continued overleaf)
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Table 11.13 (continued)
STEP NO. 2

VARIABLE ENTERED 6 WT

MULTIPLE R 0.8112
MULTIPLE R-SQUARE 0.6581
ADJUSTED R-SQUARE 0.6410
STD. ERROR OF EST. 2.9654

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO
REGRESSION 676.93490 2 338.4675 38.49
RESIDUAL 351.73250 40 8.793311

VARIABLES IN EQUATION FOR VO2MAX

STD. ERROR STD REG F
VARIABLE COEFFICIENT OF COEFF  COEFF  TOLERANCE TO REMOVE LEVEL
(Y-INTERCEPT 10.30026)
DUR 1 0.05150 0.0059 0.805 0.99123 75.12 1
WT 6 —0.12659 0.0583 —0.202 0.99123 4.71 1

VARIABLES NOT IN EQUATION

PARTIAL F
VARIABLE CORR. TOLERANCE TO ENTER LEVEL
HR 3 —0.08377 0.68819 0.28 1
AGE 4 —0.24750 0.52459 2.54 1
HT 5 0.20922 0.66111 1.79 1

The 0.05 F critical value with degrees of freedom 1 and 42 is approximately 4.07. Thus
at step 0, duration, maximum heart rate, and age are all statistically significantly related to the
dependent variable VO7 pax.

We see this by examining the F-to-enter column in the output from step 0. This is the
F-statistic for the square of the correlation between the individual variable and the dependent
variable. In step O up on the left, we see the analysis of variance table with only the constant
coefficient. Under partial correlation we have the correlation between each variable and the
dependent variable. At the first step, the computer program scans the possible predictor variables
to see which has the highest absolute value of the correlation with the dependent variable. This
is equivalent to choosing the largest F'-to-enter. We see that this variable is DURATION. In step 1,
DURATION has entered the predictive equation. Up on the left, we see the multiple R, which
in this case is simply the correlation between the VO, pax and DURATION variables, the value
for RZ, and the standard error of the estimate; this is the estimated standard deviation about
the regression line. This value squared is the mean square for the residual, or the estimate
for o2 if this is the correct model. Below this is the analysis of variance table, and below
this, the value of the regression coefficient, 0.050, for the DURATION variable. The standard
error of the regression coefficient is then given. The standardized regression coefficient is the
value of the regression coefficient if we had replaced DURATION by its standardized value.
The value F-to-remove in a stepwise regression is the statistical significance of the partial
correlation between the variable in the model and the dependent variable when adjusting for other
variables in the model. The left-hand side lists the variables not already in the equation. Again
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we have the partial correlations between the potential predictor variables and the dependent
variable after adjusting for the variables in the model, in this case one variable, DURATION.
Let us focus on the variable AGE at step O and at step 1. In step O there was a very highly
statistically significant relationship between VO; max and AGE, the F-value being 30.15. After
DURATION enters the predictive equation, in step 1 we see that the statistical significance has
disappeared, with the F-to-enter decreasing to 2.53. This occurs because AGE is very closely
related to DURATION and is also highly related to VO, max. The explanatory power of AGE may,
equivalently, be explained by the explanatory power of DURATION. We see that when a variable
does not enter a predictive model, this does not mean that the variable is not related to the
dependent variable but possibly that other variables in the model can account for its predictive
power. An equivalent way of viewing this is that the partial correlation has dropped from —0.65
to —0.24. There is another column labeled “tolerance”. The tolerance is 1 minus the square of
the multiple correlation between the particular variable being considered and all of the variables
already in the stepwise equation. Recall that if this correlation is large, it is very difficult to
estimate the regression coefficient [see equation (14)]. The tolerance is the term (1 — R%) in
equation (14). If the tolerance becomes too small, the numerical accuracy of the model is in
doubt.

In step 1, scanning the F'-to-enter column, we see the variable WEIGHT, which is statistically
significantly related to VO, max at the 5% level. This variable enters at step 2. After this
variable has entered, there are no statistically significant relationships left between the variables
not in the equation and the dependent variable after adjusting for the variables in the model.
The stepwise regression would stop at this point unless directed to do otherwise.

It is possible to modify the stepwise procedure so that rather than starting with O variables and
building up, we start with all potential predictive variables in the equation and work down. In
this case, at the first step we discard from the model the variable whose regression coefficient has
the largest p-value, or equivalently, the variable whose correlation with the dependent variable
after adjusting for the other variables in the model is as small as possible. At each step, this
process continues removing a variable as long as there are variables to remove from the model
that are not statistically significantly related to the response variable at some particular level.
The procedure of adding in variables that we have discussed in this chapter is called a step-up
stepwise procedure, while the opposite procedure of removing variables is called a step-down
stepwise procedure. Further, as the model keeps building, it may be that a variable entered earlier
in the stepwise procedure no longer is statistically significantly related to the dependent variable
in the presence of the other variables. For this reason, when performing a step-up regression,
most regression programs have the ability at each step to remove variables that are no longer
statistically significant. All of this aims at a simple model (in terms of the number of variables)
which explains as much of the variability as possible. The step-up and step-down procedures
do not look at as many alternatives as the C, plot procedure, and thus may not be as prone to
overfitting the data because of the many models considered. If we perform a step-up or step-
down fit for the anesthesia data discussed above, the resulting model is the same as the model
picked by the C, plot.

11.7  POLYNOMIAL REGRESSION

We motivate this section by an example. Consider the data of Bruce et al. [1973] for 44 active
males with a maximal exercise treadmill test. The oxygen consumption VO, pmax was regressed
on, or explained by, the age of the participants. Figure 11.4 shows the residual plot.
Examination of the residual plot shows that the majority of the points on the left are positive
with a downward trend. The points on the right have generally higher values with an upward
trend. This suggests that possibly the simple linear regression model does not fit the data well.
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Figure 11.4 Residual plot of the regression of VO, max on age, active males.

The fact that the residuals come down and then go up suggests that possibly rather than being
linear, the regression curve should be a second-order curve, such as

Y=a+bX+bhX+e

Note that this equation looks like a multiple linear regression equation. We could write this
equation as a multiple regression equation,

Y=a+b X1 +DbXo+e

with X; = X and X, = X?. This simple observation allows us to fit polynomial equations to data
by using multiple linear regression techniques. Observe what we are doing with multiple linear
regression: The equation must be linear in the unknown parameters, but we may insert known
functions of an explanatory variable. If we create the new variables X; = X and X, = X2 and
run a multiple regression program, we find the following results:

t-statistic

Variable or Constant b; SE(b;) (t41,0.975 = 2.02)
Age —1.573 0.452 —3.484
Age2 0.011 0.005 2.344
Constant 89.797 11.023

We note that both terms age and age? are statistically significant. Recall that the ¢-test for the
age? term is equivalent to the partial correlation of the age squared, with VO, max adjusting
for the effect of age. This is equivalent to considering the hypothesis of linear regression nested
within the hypothesis of quadratic regression. Thus, we reject the hypothesis of linear regression
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and could use this quadratic regression formula. A plot of the residuals using the quadratic
regression shows no particular trend and is not presented here. One might wonder, now that we
have a second-order term, whether perhaps a third-order term might help the situation. If we
run a multiple regression with three variables (X3 = X3), the following results obtain:

t-statistic

Variable or Constant bj SE(b) (t20,0.975 = 2.02)
Age —0.0629 2.3971 —0.0264
Age2 —0.0203 0.0486 —0.4175
Age® 0.0002 0.0003 0.6417
Constant 1384.49 783.15

Since the age® term, which tests the nested hypothesis of the quadratic equation within the
cubic equation, is nonsignificant, we may accept the quadratic equation as appropriate.

Figure 11.5 is a scatter diagram of the data as well as the linear and quadratic curves. Note
that the quadratic curve is higher at the younger ages and levels off more around 50 to 60.
Within the high range of the data, the quadratic or second-order curve increases. This may be
an artifact of the curve fitting because all physiological knowledge tells us that the capacity for
conditioning does not increase with age, although some subjects may improve their exercise
performance with extra training. Thus, the second-order curve would seem to indicate that in
a population of healthy active males, the decrease in VO, max consumption is not as rapid at
the higher ages as at the lower ages. This is contrary to the impression that one would get from
a linear fit. One would not, however, want to use the quadratic curve to extrapolate beyond or
even to the far end of the data in this particular example.

We see that the real restrictions of multiple regression is not that the equation be linear in
the variables observed, but rather that it be linear in the unknown coefficients. The coefficients

60

50

VO2 Max

40
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Figure 11.5 Active males with treadmill test: linear (solid line) and quadratic (dashed line) fits. (From
Bruce et al. [1973].)



468 ASSOCIATION AND PREDICTION: MULTIPLE REGRESSION ANALYSIS

may be multiplied by known functions of the observed variables; this makes a variety of models
possible. For example, with two variables we could also consider as an alternative to a linear
fit (as given below) a second-order equation or polynomial in two variables:

Y=a+b X1 +DbXo+e
(linear in X{ and X»), and
Y=a+b1X1+b:X> +b3X% + by X1 X2 + b5X§ +e
(a second-order polynomial in X and X>).
Other functions of variables may be used. For example, if we observe a response that we
believe is a periodic function of the variable X with a period of length L, we might try an

equation of the form

2n X 2 X
+ b4 cos

X X .
Y:a+b151nT+bzcosT+b3sm +e

The important point to remember is that not only can polynomials in variables be fit, but any
model may be fit where the response is a linear function of known functions of the variables
involved.

11.8 GOODNESS-OF-FIT CONSIDERATIONS

As in the one-dimensional case, we need to check the fit of the regression model. We need to
see that the form of the model roughly fits the data observed; if we are engaged in statistical
inference, we need to see that the error distribution looks approximately normal. As in simple
linear regression, one or two outliers can greatly skew the results; also, an inappropriate func-
tional form can give misleading conclusions. In doing multiple regression it is harder than in
simple linear regression to check the assumptions because there are more variables involved.
We do not have nice two-dimensional plots that display our data completely. In this section we
discuss some of the ways in which multiple regression models may be examined.

11.8.1 Residual Plots and Normal Probability Plots

In the multiple regression situation, a variety of plots may be useful. We discussed in Chapter 9
the residual plots of the predicted value for Y vs. the residual. Also useful is a normal probability
plot of the residuals. This is useful for detecting outliers and for examining the normality
assumption. Plots of the residual as a function of the independent or explanatory variables may
point out a need for quadratic terms or for some other functional form. It is useful to have such
plots even for potential predictor variables not entered into the predictive equation; they might
be omitted because they are related to the response variable in a nonlinear fashion. This might
be revealed by such residual plots.

Example 11.3. (continued) We return to the healthy normal active females. Recall that the
VO; max in a stepwise regression was predicted by DURATION and WEIGHT. Other variables
considered were MAXIMUM HEART RATE, AGE, and HEIGHT. We now examine some of the residual
plots as well as normal probability plots. The left panel of Figure 11.6 is a plot of residuals vs.
fitted values. The residuals look fairly good except for the point circled on the right-hand margin,
which lies farther from the value of zero than the rest of the points. The right-hand panel gives
the square of the residuals. These values will have approximately a chi-square distribution with
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Figure 11.6 Residual plots.

one degree of freedom if normality holds. If the model is correct, there will not be a change
in the variance with increasing predicted values. There is no systematic change here. However,
once again the one value has a large deviation.

Figure 11.7 gives the normal probability plot for the residuals. In this output, the values
predicted are on the horizontal axis rather than on the vertical axis, as plotted previously. Again,
the residuals look quite nice except for the point on the far left; this point corresponds to the
circled value in Figure 11.6. This raises the possibility of rerunning the analysis omitting the
one outlier to see what effect it had on the analysis. We discuss this below after reviewing more
graphical data.

Figures 11.8 to 11.12 deal with the residual values as a function of the five potential predictor
variables. In each figure the left-hand panel presents the observed and predicted values for the
data points and the right-hand panel for the observed values of those data present the residual
values. In Figure 11.7, for DURATION, note that the values predicted are almost linear. This is
because most of the predictive power comes from the DURATION variable, so that the value
predicted is not far removed from a linear function of bURATION. The residual plot looks nice,
with the possible exception of the outlier. In Figure 11.8, with respect to WEIGHT, we have the
same sort of behavior as we do in the last three figures for AGE, MAXIMAL HEART RATE, and
HEIGHT. In no case does there appear to be systematic unexplained variability than might be
explained by adding a quadratic term or other terms to the equation.

If we rerun these data removing the potential outlier, the results change as given below.

All Data Removing the Outlier Point
Variable or Constant b t b; t
DURATION 0.0515 8.67 0.0544 10.17
WEIGHT -0.127 =2.17 —0.105 —-2.02
Constant 10.300 7.704
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Figure 11.8 Duration vs. residual plots.
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@] .
40 - 5 4
0o . . ’
* o [e) :
354¢ . ' .
. .
* o ©° * ° . .
se ¢ ‘0 (o] s 0+-—-—--——-- ————— —— — —
¢ g% 6 Oe ° 3 e .
30 4 6 * ° * g . .
O o (If”o ¢ 04 . :
[~ H
o8 o . .-
25 - & '
o 8 < . _5 -
& o°
3
O
20 A o
*